

An ABN 64 002 841 0

Detailed Site Investigation

Proposed Melrose Park High School

37 Hope Street, Melrose Park

REPORT NO 20468/5-AA.v1 15 JANUARY 2025

Cover Page

Document Prepared by

Geotechnique Pty Ltd 1 Lemko Place, Penrith NSW 2750 PO Box 880, Penrith NSW 2751 Email: Geotech@geotech.com.au Tel: +61 2 4722 2700 www.geotech.com.au

Document Information

Document Title	Detailed Site Investigation Report
Site Address	37 Hope Street, Melrose Park
Job No	20468/5
Report No	20468/5-AA.v1
Client	NSW Department of Education
	School Infrastructure NSW (SINSW)
Client Address	GPO Box 33, Sydney NSW 2001

Document Control

Rev	Date	Revision Detail / Status	Author	Reviewer	Approver
0	23/12/2024	Initial Issue	John Xu		John Xu
1	15/01/2025	Revision 1	John Xu		John Xu

Author Signature	8 xu
Name	John Xu
Title	Senior Associate

This document is produced by Geotechnique Pty Ltd solely for the benefit and use by the client in accordance with the terms of the engagement. Geotechnique Pty Ltd does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

An ABN 64 002 841 063

Job No: 20468/5 Our Ref: 20468/5-AA.v1 15 January 2025

NSW Department of Education School Infrastructure NSW (SINSW) GPO Box 33 SYDNEY NSW 2001

re: Proposed Melrose Park High School 37 Hope Street, Melrose Park Detailed Site Investigation

Please find herewith our Detailed Site Investigation report for the above site.

A brief of the outcome of the assessment is summarised in the Executive Summary.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

1/xu

JOHN XU Senior Associate BE, MEngSc, MEAust Email: john@geotech.com.au

Acronyms and Abbreviations

Acronym / Abbreviation	Description
ABC	Ambient Background Concentration
ACL	Added Contaminant Limit
ACM	Asbestos containing material
ADE	ADE Consulting Group Pty Ltd
AEC	Area of Environmental Concern
AF	Asbestos Fines
ASET	Australian Safer Environment & Technology Pty Ltd
ВА	Building Application
BTEX	Benzene Toluene, Ethyl Benzene and Xylenes
CEC	Cation Exchange Capacity
СОС	Chains of Custody
COLA	Covered Outdoor Learning Area
CoPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
DA	Development Application
DoE	Department of Education
DP	Dougles Partners Pty Ltd
DSI	Detailed Site Investigation
EI	El Australia
EIL	Ecological Investigation Level
ENM	Excavated natural material
Envirolab	Envirolab Services Pty Ltd
EP&A Act	Environmental Planning and Assessment Act
EPA	Environment Protection Authority
ESL	Ecological Screening Level
FA	Fibrous Asbestos
Geosyntec	Geosyntec Consultants Pty Ltd
Geotechnique	Geotechnique Pty Ltd
GIPA	Government Information Public Access
GLS	General Learning Spaces
HIL	Health Investigation Level
HS	High School
HSL	Health Screening Level
km	kilometre
LEP	Local Environmental Plan
LGA	Local Government Area
LOEC	lowest observed effect concentrations
LOR	Limit of Reporting
m	metre
m ²	Square metre
NATA	National Association of Testing Authorities

20468/5-AA Acronyms and Abbreviations Continued

Acronym / Abbreviation	Description
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
PAEC	Potential Area of Environmental Concern
РАН	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyls
PFAS	Per and Poly Fluoroalkyl Substances
PID	Photo-Ionisation Detector
POEO	Protection of Environment Operations
PSI	Preliminary Desktop Site Investigation
QA	Quality Assurance
QC	Quality Control
TRH	Total Recoverable Hydrocarbons
RAP	Remedial Action Plan
REF	Review of Environmental Factors
SAQP	Sampling, Analysis and Quality Plan
SEPP	State Environmental Planning Policy
SGS	SGS Environmental Services
SH	SH Melrose PP Land Pty Ltd
SINSW	School Infrastructure NSW
SQG	Soil Quality Guidelines
VENM	Virgin excavated natural material
VOC	Volatile organic compounds

EXECUTIVE SUMMARY

This Detailed Site Investigation (DSI) report has been prepared by Geotechnique Pty Ltd (Geotechnique) on behalf of the NSW Department of Education (DoE) to assess the potential environmental impacts that could arise from the construction and use of the new Melrose Park High School project (the **Activity**) at Part 84 Wharf Road, Melrose Park. This report supports the assessment of the proposed Activity under Part 5 of the *Environmental Planning and Assessment Act 1979*. The Activity is proposed by the DoE to meet the growth in educational demand in the Melrose Park precinct.

The objectives of the DSI were to determine the contamination status of the soil for confirmatory soil sampling and laboratory testing in borehole locations in conjunction with intrusive geotechnical investigation, to assess the suitability of the site for the proposed land use, and to make recommendations with regard to any future remedial works if required. The scope of work included review of the PSI report prepared by Geotechnique and Section A Site Audit Report prepared Site Auditor Ms Kylie Lloyd, site inspection, as well as confirmatory soil sampling and laboratory testing.

The findings of this DSI are summarised as follows:

- The remediation and validation works for the site had been completed.
- Site Auditor Ms Kylie Lloyd of Geosyntec had issued SAS and SAR November 2024 and considered the site is suitable for the proposed school (including daycare centre, preschool, primary school and secondary school) use.
- The site appeared to comprise a vacant portion of a larger construction site subject to bulk earth moving activities at the time of sampling and site inspection in December 2024.
- All the laboratory test results for confirmatory soil sampling and laboratory testing satisfied the criteria
 for stating that the analytes selected are either not present i.e. concentrations less than laboratory
 limits of reporting or present in the sampled soil at concentrations that do not pose a risk of hazard to
 human health or the environment under the condition for the proposed high school land use.
- No further site investigation and remediation are deemed necessary.

Based on this assessment, Geotechnique's opinion that the conclusions drawn in the Geosyntec SAS and SAR November 2024 considered relevant, and the site is considered suitable for the proposed Melrose Park high school land use.

If suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces / pipes, ash material, imported fill materials [which are different to those encountered during this and previous assessments], etc.) are encountered during any stage of future earthworks / site preparation, we recommend that this office is contacted for assessment and an unexpected finds management protocol in Appendix E of this report should be implemented.

Reference should be made to Section 9.0 for details of the recommendations regarding any materials to be excavated and removed from the site, and any fill to be imported to the site.

Reference should be made to Section 10.0 for the limitations of this report.

GEOTECHNIQUE PTY LTD

TABLE OF CONTENTS

			Page
1.0		DUCTION AND DECLARATION	
2.0		ARY OF ACTIVITIES	
3.0	SITE D	DESCRIPTION	3
4.0	REF RI	EPORTING REQUIREMENTS	3
5.0	CONSU	JLTANT REPORT CONTENT	5
5.	1 Hist	torical / Background Information	5
	5.1.1	Aerial Photographs	5
	5.1.2	NSW Land Registry Services Records	
	5.1.3	Section 10.7 Planning Certificate and Council Records	
	5.1.4	NSW EPA Record of Notices and POEO Public Register	
	5.1.5	SafeWork NSW Records	
	5.1.6	Controlled Chemicals	
	5.1.7	Per and Poly Fluoroalkyl Substances (PFAS)	
	5.1.8 5.1.9	School Asbestos Register	
		Acid Sulfate Soils Salinity	
	5.1.10 5.1.11	Topography	
	5.1.12	Regional Geology & Soil Landscape	
	5.1.13	Hydrology & Hydrogeology	
5.		sults of Preliminary Desktop Site Investigation	
5.		cutive Summary of Auditor SAR KJL254 School SctA	
5.	.4 Det	ailed Site Investigation	14
	5.4.1	Sampling, Analysis, Quality Plan and Sampling Methodology	14
	5.4.2	Assessment Criteria	16
	5.4.3	Summary of Site and Field Observation	17
	5.4.4	Assessment of Laboratory Test Results	
5.	5 Site	e Characterisation	18
6.0	POTEN	ITIAL CONTAMINATION CONSTRAINTS OR RISKS	19
7.0		ATION MEASURES FOR CONTAMINATION RISKS	
8.0	SIGNI	FICANCE OF ENVIRONMENTAL IMPACTS	20
9.0		LUSION AND RECOMMENDATIONS	
10.0	LIMITA	ATIONS	21

İİ

20468/5-AA.v1 Table of Contents continued

FIGURES

Figure 1	Location of Proposed Melrose Park High School 1	1
Figure 2	Footprints of Proposed Structures in Proposed Melrose Park High School	ł

LIST OF REFERENCES

DRAWINGS

20468/3-AA1	Site Layout and Features
20468/4-AA1	Borehole Locations

LABORATORY TEST RESULT SUMMARY TABLES

Table A	Rinsate
Table B	Trip Spike
Table C	Duplicate Sample
Table D	Split Sample
Table E	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Discrete Samples
Table F	Total Recoverable Hydrocarbons (TRH) and BTEX Test Results –Discrete Samples
Table G	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples
Table H	Organochlorine Pesticides (OCP), Organophosphate Pesticides (OPP), Polychlorinated Biphenyls (PCB) & Phenols Test Results – Discrete Samples
Table I	Asbestos Test Results – Discrete Samples

APPENDICES

APPENDIX A	REF Requirements Checklist
APPENDIX B	Engineering Borehole Logs
APPENDIX C	PID Calibration Sheets
APPENDIX D	Laboratory Analytical Reports & Certificate of Analysis
APPENDIX E	Unexpected Finds Management Protocol
APPENDIX F	Environmental Notes

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

1.0 INTRODUCTION AND DECLARATION

This Detailed Site Investigation (DSI) report has been prepared by Geotechnique Pty Ltd (Geotechnique) on behalf of the NSW Department of Education (DoE) to assess the potential environmental impacts that could arise from the construction and use of the new Melrose Park High School project (the **Activity**) at Part 37 Hope Street, Melrose Park. This report supports the assessment of the proposed Activity under Part 5 of the *Environmental Planning and Assessment Act* 1979. The Activity is proposed by the DoE to meet the growth in educational demand in the Melrose Park precinct. Figure 1 below shows the location of the site.

Figure 1 - Location of Proposed Melrose Park High School

This report has been prepared to determine the contamination status of the soil for confirmatory soil sampling and laboratory testing in borehole locations in conjunction with intrusive geotechnical investigation, to assess the suitability of the site for the proposed land use, and to make recommendations with regard to any future remedial works if required.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

2.0 SUMMARY OF ACTIVITIES

The proposed activity involves the construction and use of a new high school in two stages for approximately 1,000 students.

Stage 1 of the proposed activity includes the following:

- Site preparation works.
- Construction of Block A a six-storey (with additional roof / plant level) school building in the southwesternportion of the site containing staff rooms and General Learning Spaces (GLS).
- Construction of Block B a one storey (double height) hall, gymnasium, canteen and covered outdoor learning area (COLA) building in the south-eastern portion of the site.
- Construction of Block C a single storey plant and storage building at the north-eastern portion of the site.
- Associated landscaping.
- Construction of on-site car parking.
- Provision and augmentation of services infrastructure.
- Associated public domain infrastructure works to support the school, including (but not limited to):
 - Provision of kiss and drop facilities along Wharf Road and widening of the Wharf Road footpath.
 - Raised pedestrian crossings on Wharf Road and Hope Street.

Stage 2 of the proposed activity includes the following:

- Construction of Block D a five-storey (with additional roof / plant level) school building in the northwestern portion of the site containing staff rooms and GLS.
- Additional open play spaces within the terrace areas of Block D.
- Minor layout amendments to Block A.

Figure 2 in the following page shows footprints of proposed buildings, car park, open spaces etc.

Figure 2 - Footprints of Proposed Structures in Proposed Melrose Park High School

3.0 SITE DESCRIPTION

The site is located at 37 Hope Street, Melrose Park within the Parramatta (LGA). The school covers an approximate area of 9,500 square metres (m²) and is generally rectangular in shape. The site is currently cleared and vacant. The site is located approximately 8 kilometres (km) east of the Parramatta CBD.

4.0 REF REPORTING REQUIREMENTS

Reviews of Environmental Factors (REF) reporting requirements checklist for the proposed Activity is presented in Appendix A. This DSI report is prepared specifically to address the following REF reporting requirements related to key contamination issue.

3

Requirement	Y	N	N/A	Comments / Relevant Report Section
Contamination				
 Have either of the following been prepared to inform the REF: a Preliminary Site Investigation (PSI) and/or Detailed Site Investigation (DSI) that conclude that there is a low risk of contamination and that the site is suitable for the use of the site as a school; or a PSI and/or DSI and a Remediation Action Plan (RAP)? 				Sections 5.3, 5.4, 5.5, 6.0, 8.0 & 9.0
Does the PSI, DSI and RAP address all the potential sources of contamination mentioned in the various report?				Sections 5.2, 5.3 & 5.4
If the DSI or RAP identifies that limited further testing is required, has this been incorporated as a mitigation measure in the REF?				Sections 5.5, 6.0 & 7.0
If remediation is required, does the REF determine if the remediation is Category 1 or 2 having regarded to the Hazards and Resilience SEPP?				
Does the REF include an interim statement from a Site Auditor confirming that the RAP is appropriate?			\boxtimes	
If no interim statement, does the RAP set out actions to remediate all potential sources of contamination?			\boxtimes	
Does the REF summarise investigations undertaken and conclude that contamination risk has been appropriately addressed in accordance with the Hazards and Resilience SEPP?				Sections 5.3, 5.4 & 5.5
Has the PSI, DSI and/or RAP concluded that the proposal would not be likely to result in significant environmental effects as a result of contamination and/or contamination management?				Sections 5.3, 5.5 & 8.0
Does the REF list any mitigation measures identified in the assessment and incorporate them into the design where applicable?				Sections 6.0, 7.0 & 9.0 and Appendix E

5.0 CONSULTANT REPORT CONTENT

Geotechnique carried out the PSI for the site in February 2024 as detailed in the following:

PSI report: Preliminary Desktop Site Investigation report Site Contamination DD PSI-Proposed Melrose Park New HS-Geotechnique-DDWO05601/23 (Our Ref: 20468/3-AA dated 27 February 2024).

Site Auditor Ms Kylie Lloyd of Geosyntec Consultants Pty Ltd (Geosyntec) issued the following for the proposed school, 84 Wharf Road, Melrose Park:

- Site Audit Report (SAR): Section A Site Audit Report (Ref: 20244 Final SAR KJL254 School SctA dated 4 November 2024); and
- Site Audit Statement (SAS): (Ref: SAS KJL254 School SctA dated 4 November 2024)

Geotechnique conducted this DSI for confirmatory soil sampling and laboratory testing and notes agreement with the SAR and SAS.

This section presents a summary of historical / background information and the results of the investigation / assessment.

5.1 Historical / Background Information

5.1.1 Aerial Photographs

Aerial photographs taken in 1950, 1960, 1970, 1977, 1985, 1993, 2004, September 2013 and October 2023 were examined.

Review of the aerial photographs indicated that the site was part of a parcel of rural residential land and predominantly vacant prior to the 1960s. The site was developed for industrial / commercial land use in 1970s. The buildings / features were removed in or prior to 2023.

Wharf Road and Hope Street had been formed and located to the east and south of the site respectively since or prior to 1950. The adjoining western, northern and eastern properties were rural residential land and developed into commercial / industrial land use in 1970s. The buildings / features were removed in or prior to 2023. The properties to the south west and south of the site across the road were urban residential land and developed into commercial / industrial or school land uses in 1960s and 1970s. The properties to the further west of the site, as well as to the east of the site across the road had been urban residential since 1950s.

5.1.2 NSW Land Registry Services Records

The site comprises part of a parcel of land formerly registered as Lot 201 in DP1265603 (refer to the Drawing No 20468/3-AA1).

Review of the historical aerial photographs and records of NSW Land Registry Services revealed that the site had been used for industrial activities between 1970s and 2010s.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

5.1.3 Section 10.7 Planning Certificate and Council Records

Planning Certificate (No 2024/66) under Section 10.7 (2 & 5) of the Environmental Planning and Assessment Act 1979 for the site issued on 9 January 2024 by Parramatta City Council, indicated the following:

- The land is located at 84 Wharf Road Melrose Park.
- The land is zoned RE1 Public Recreation, R4 High Density Residential and SP2 Infrastructure under Parramatta Local Environmental Plan (LEP) 2023.
- An item of environmental heritage is not situated on the land
- The land is not located in a heritage conservation area.
- In regard to the following matters contained in Clause 59(2) as amended in the Contaminated Land Management Act 1997 as listed:
 - Clause 59(2)a The land to which the certificate relates is not significantly contaminated land.
 - > Clause 59(2)b The land to which the certificate relates is not subject to a management order.
 - Clause 59(2)c The land to which the certificate relates is not subject to an approved voluntary management proposal.
 - Clause 59(2)d The land to which the certificate relates is not subject to an ongoing maintenance order.
 - > Clause 59(2)e The land to which the certificate relates is subject to a site audit statement.
- The land is not biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.
- Council has not been notified by NSW Fair Trading of the property being listed on the loose-fill asbestos insulation register maintained by the Secretary of NSW Fair Trading.
- The land is identified as Class 5 on the Acid Sulfate Soils map.

An enquiry was made to Council under Government Information Public Access (GIPA) Act on publicly available records on Development Applications (DA), Building Applications (BA) and application approvals. This information can sometimes include complaints or comments from neighbouring persons or companies, which might be relevant to the contamination status of the site.

A summary of the available records of Parramatta City Council associated with Northern Melrose Park Precinct including the school site is listed below:

13 December 2023, Council's conditions of approval for DA (No. DA/1100/2021) for Melrose Park North street network (roads, footways, street trees, landscaping, drainage, services, and associated infrastructure); including tree removal, remediation and bulk earthworks; and Torrens subdivision. The application was determined by the Sydney Central City Planning Panel.

5.1.4 NSW EPA Record of Notices and POEO Public Register

A search of NSW EPA Record of Notices for Contaminated Lands on 10 January and 9 February 2024 revealed the following records for the site, adjoining properties and the land within a radius of 500m of the site:

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

- A property (Pfizer Australia Pty Ltd located at 38-42 Wharf Road, West Ryde) in the vicinity of the north of the site is recorded by EPA as "Contamination Activity Type: Chemical Industry; Management Class: regulation under CLM Act not required".
- A property (Reckitt Benckiser located at 44 Wharf Road, West Ryde) at and in the vicinity of the north of the site is recorded by EPA as "Contamination Activity Type: Chemical Industry; Management Class: regulation under CLM Act not required".
- A property (Blue Star Ermington located at 700 Victoria, Ermington) about 500m north west of the site is recorded by EPA as "Contamination Activity Type: Service Station; Management Class: regulation under CLM Act not required".

A search of the and Protection of Environment Operations (POEO) Public Register on 10 January, as well as 7 and 8 February 2024 found the following records for the site, adjoining properties and the land within a radius of 500m of the site:

- POEO licence (No 2838) for hazardous, industrial or Group A waste generation or storage of pharmaceutical and veterinary products production was issued to Pfizer Australia on 26 June 2000 and surrendered on 3 June 2011 for the property located at 38-42 Wharf Road, West Ryde, in the vicinity of the north the site.
- POEO licence (No 2196) for chemical production, waste generation and dangerous goods production was issued to Reckitt Benckiser Australia on 31 March 2000 and surrendered on 2 September 2013 for the property located at 44 Wharf Road, West Ryde, at and in the vicinity of the north of the site.
- POEO licence (No 1024) for chemical production waste generation, pharmaceutical and veterinary products production was issued to Glaxosmithkline Healthcare Australia on 17 December 1999 and surrendered on 1 April 2021 for the property located at 82 Hughes Avenue, Ermington, about 480m south west of the site.
- POEO licence (No 2762) for chemical production waste generation was issued to Eli Lilly Australia on 26 June 2000 and was surrendered on 5 July 2010 for the property located at 112 Wharf Road, West Ryde, about 300m south of the site.

5.1.5 SafeWork NSW Records

A search of the records held by SafeWork NSW had not located any records pertaining to the site.

5.1.6 Controlled Chemicals

To determine the presence or otherwise of controlled chemicals, a site inspection and discussion of the former / existing activities and operations with facility management at the site and / or on telephone are required. This could not be made as the site inspection and a consultation with the public do not form part of the scope of work for the PSI.

5.1.7 Per and Poly Fluoroalkyl Substances (PFAS)

A search of the NSW Government PFAS investigation program (accessed via the EPA website on 22 January 2024) revealed that the listed 50 investigation sites were not related to the site and the land within a radius of 500m of the site.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

5.1.8 School Asbestos Register

The Department of Education's schools asbestos register contains information about the existence and location of any known or presumed asbestos-containing materials on school sites, based on advice from experts.

A search of the records of school's asbestos register had not located any records pertaining to the site.

5.1.9 Acid Sulfate Soils

Acid Sulphate Soil Risk Map (Edition 2, 1:25,000) of Prospect / Parramatta River prepared by Department of Land and Water Conservation indicates there is no known occurrence of acid sulphate soil (ASS) materials at the site. However, the site is potentially impacted by acid sulphate soils as Ei0 (Estuarine Intertidal Flat with elevation level of 0-1 m) with acid sulphate potential has been identified in the land located about 300m to the south west of the site near the Parramatta River.

Section 10.7 Certificate revealed that the site is identified as Class 5 on the Acid Sulphate Soils Map with reference to Parramatta LEP 2021. Area within Class 5 requires development consent for carrying out of works within 500m of adjacent Class 1, 2, 3 or 4 land that is below 5m Australian Height Datum and by which the watertable is likely to be lowered below 1m Australian Height Datum on adjacent Class 1, 2, 3 or 4 land.

Review of the Parramatta LEP 2021 Acid Sulfate Soils Maps revealed that the nearest land identified as Class 2 is approximately 300m to the south west of the site. However, it was noted that the elevation of site was approximately 16.5 m AHD. It is our opinion that it is unlikely that the proposed development works would encounter ASS.

As such, it is our assessment that earthworks (disturbance or excavation of soils) for proposed works can be carried out without an approved Acid Sulphate Soil Management Plan.

5.1.10 Salinity

Reference to Map showing Salinity Potential in Western Sydney prepared by Department of Infrastructures, Planning and Natural Resources (2002) indicates that there is very low salinity potential across the site.

It is our assessment that earthworks (disturbance or excavation of soils) for proposed development works may be carried out without a Saline Soil Management Plan.

5.1.11 Topography

Assessment of site slope was carried out on Mecone Mosaic website which includes up to date topographical data. According to elevation contours on Mecone Mosaic, the site appears to be flat (at elevation of approximately 16.5 mAHD) in general and gently slopes towards the east.

5.1.12 Regional Geology & Soil Landscape

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Quaternary Age soils consisting of silty to peaty quartz sand, silt and clay with ferruginous and humic cementation in places and common shell layers.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

The Soil Landscape Map of Sydney (Soil Landscape Series Sheet 9130, Scale 1:100,000, 1989), published by the Soil Conservation Service of NSW, indicates that the site is located within the Lucas Heights landscape area and typically consists of occasionally impermeable residual soils

Reference should be made to engineering borehole logs in Appendix B for descriptions of the soils encountered during sampling on 2 and 3 December 2024 for this assessment. Based on information from all borehole locations the sub-surface profile is generalised as follows:

Fill	Gravelly Clay, low plasticity, grey or brown-grey, with gravel was encountered in borehole locations BH1, BH2 and BH4 to depths ranging from approximately 0.15m to 0.3m below the existing ground level (EGL).
Natural Soil	Silty CLAY, medium to high plasticity, brown mottled grey with or without shale fragments SHALE, brown-grey, highly, moderately or highly to moderately weathered, low to medium, medium or low strength

All the recovered soil samples were screened for the presence of volatile organic compounds (VOC) using a calibrated Photo-Ionisation Detector (PID). The PID readings on recovered soil samples, as presented in engineering borehole logs in Appendix B, were equal to zero, suggesting that the presence of volatiles in the soil is unlikely.

There were no obvious fibro-cement / asbestos fragments and foreign materials, no detectable odour and no obvious staining / discolouration of the soil and vegetation in the borehole locations and recovered soil samples that would indicate potential for contamination.

No groundwater or perched water was encountered during sampling in conjunction with geotechnical investigation to a maximum depth of approximately 5.5m below the EGL and during the short time the boreholes remained open. It should be noted that fluctuations in the level of groundwater might occur due to variations in rainfall and / or other factors not evident during investigation.

5.1.13 Hydrology & Hydrogeology

No water bodies, such as a creek, river, or wetland is located close to and transecting the site. Archer Creek and Parramatta River are located approximately 390m and 600m to the east and south of the site respectively.

A site-specific groundwater analysis is outside the scope of this assessment. However, a search was carried out on 10 January 2024 through the website of WaterNSW for any registered groundwater bore data within a radius of 500m of the site. The search revealed that no information available on that date.

5.2 Results of Preliminary Desktop Site Investigation

The objectives of the PSI were to identify any areas of potential contamination and to assess if the site is likely to present a risk of harm to human health and the environment for the proposed high school land use, as well as is considered suitable or can be made suitable for the proposed land use.

In order to achieve the objectives, the following scope of work was conducted:

- A desktop study of;
 - Historical aerial photographs

- > NSW Land Registry Services records
- Section 10.7 planning certificate
- Council records
- > The following documents provided by SINSW:
 - Remediation Action Plan (RAP) School Site, 84 Wharf Road, Melrose Park, reference E25803.E06_School_ Rev3 dated 9 October 2023 prepared by EI Australia (EI) (EI RAP October 2023).
 - Site Audit Statement (SAS), reference SAS KJL254 School SctB dated 20 October 2023 prepared by Geosyntec Consultants Pty Ltd (Geosyntec) (Geosyntec SAS October 2023).
 - Site Audit Report (SAR), reference 20244 SAR KJL254 School SctB dated 20 October 2023 prepared by Geosyntec (Geosyntec SAR October 2023).
- > NSW EPA Record of Notices for Contaminated Lands
- > Search for licences, applications and notices under the POEO public register
- SafeWork NSW records
- > Available information regarding controlled chemicals and PFAS
- School asbestos register
- Soil and geological maps
- Groundwater bore records of WaterNSW

An inspection is required to observe present site conditions and any areas of environmental concern based on visual and olfactory indicators of potential contamination that differ from those identified during the previous investigations by EI. The site inspection had not been carried out as an approval for the site access for inspection was required and had not been received.

In addition, discussion of the former / existing activities and operations with facility management at the site and / or on telephone is also required. However, it was understood that a consultation with the public did not form part of the scope of work at that time.

EI had identified the existing soil and groundwater contamination within the site. Area of environmental concern (AEC) and associated contamination / contaminants of potential concern (CoPC) had been identified within the site; and conceptual site model (CSM) had been developed by EI.

Based on all the findings from across the site, localised soil contamination was identified, which included heavy metals, particularly chromium (Cr), nickel (Ni) & zinc (Zn), Total Recoverable Hydrocarbons (TRH) including F1 (TRH C6 – C10 less the sum of BTEX [Benzene, Toluene, Ethyl Benzene and Xylenes] concentrations]), F2 (TRH >C10 – C16 less the concentration of naphthalene) and F3 (TRH >C16 – C34), Organochlorine Pesticides (OCP), particularly Aldrin and Dieldrin, Polycyclic Aromatic Hydrocarbons (PAH) particularly benzo(a)pyrene (BaP), asbestos (bonded and friable). The contamination had resulted from multiple sources from past commercial and industrial use. The contamination was generally relatively shallow overlying the shale and / or sandstone bedrock.

The groundwater had isolated impacts with heavy metals, particularly copper (Cu) & Zn, and TRH including F2.

EOTECHNIQUE

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

Remediation was therefore deemed necessary, as detailed in EI RAP October 2023.

SH Melrose PP Land Pty Ltd (SH) commissioned Ms Kylie Lloyd of Geosyntec to conduct a site audit to provide an independent review of the appropriateness of environmental works completed at the Northern Melrose Park Precinct and to form an opinion on the suitability of the environmental investigations completed and that the precinct can be made suitable for the proposed mixed use residential / commercial, public open space and school. The Northern Melrose Park Precinct is being redeveloped in a staged manner with staged investigation, remediation and audits.

The audit covered by Geosyntec SAS and SAR October 2023 is part of the Northern Melrose Park Precinct and includes only the area proposed for school (including day care centre, preschool, primary school) use (the proposed School site).

The investigation results at the proposed School site indicate that:

- Soil investigation results indicate heavy metals, TRH, OCPs, VOCs and asbestos were detected above criteria and require remediation and / or management.
- Groundwater investigation results indicate heavy metals (particularly nickel and zinc), TRH, VOCs were detected above criteria and require further assessment and / or management.
- Soil vapour investigation results indicate VOCs were detected above the laboratory limit of reporting for a number of samples where no available Australian criteria were present. There are data gaps in the soil vapour assessments given only limited number of samples could be sampled.

The Auditor has issued a Section B SAS certifying that, in the opinion of the Auditor, although the nature and extent of the contamination has not been appropriately determined, the remediation plan is appropriate for the purpose(s) stated and the site can be made suitable for day care centre, preschool, primary school if the site is remediated / managed in accordance with RAP (EI 2023) subject to compliance with the following conditions:

- 1. The following data gaps must be assessed and issued as a Data Gap Investigation Report prior to commencement of remediation:
 - a. A sampling, quality and analytical plan (SAQP) must be prepared and endorsed by the Auditor to document data gap investigation scope and methodology.
 - Assessment of sampling locations proposed and not yet completed in the EI (21 October 2022) Sampling and Analysis Quality Plan, 38-42, 44 & 44A Wharf Road, Melrose Park NSW (Ref: E25803.E99_Rev1):
 - i. Locations listed in the EI figures as "Samples not collected".
 - ii. Asbestos quantification in accordance with NEPM (2013) / WA DoH (2009) across the entire site (particularly through collection of 10L samples).
 - iii. Deeper sample collected at EiA2-TP136 (in the area of former UST) to address TRH impacted backfill noting EI sample EiA2-TP136 was not sufficiently deep.
 - c. Groundwater sampling to confirm the risk of TRH considering previous silica gel clean-up results.
 - d. Vapour risk associated with VOC impacted groundwater where VOCs were / are detected in soil and groundwater samples.
- 2. The following criteria must be confirmed:
 - a. Site-specific EILs are developed for heavy metals.
 - b. Soil located to be used within the proposed landscaped areas (including the road nature strips) must be assessed against site specific EILs or NEPM (2013) conservative EILs.
- 3. Extent of soil remediation must follow Appendix B of the RAP as follows:

- a. Remediation of TRH must include management limits.
- b. The preferred remedial option for soil is understood to be excavation and offsite disposal or reuse under road (if concentrations meet criteria for road use). Any other options must be documented in a RAP addendum with Auditor Approval prior to implementation.
- 4. The following must be considered during remediation
 - a. Should significantly soil contamination be identified during the earthworks or removal of subsurface structures, the need for additional soil, groundwater and / or soil vapour investigation should be conducted.
 - b. Any excavated fill must not be placed within the proposed School site without rigorous assessment of suitability for the end use, in consideration of potential human health and ecological risk.
- 5. The following validation sampling is conducted:
 - a. Recovered aggregate must also be assessed for asbestos, in addition to the analytes required by the NSW EPA Recovered Aggregate Order.
 - b. Validation sample from asbestos-impacted areas must include at least 1 sample every 5 lineal metre along the wall (per metre depth) and 1 sample per 25m² on the base of excavation, unless otherwise justified.
 - c. Validation samples must be collected from beneath other underground petroleum storage system (UPSS) infrastructure (e.g. pipes, vent lines, etc.), sands surrounding USTs, UST excavations and any areas should the impact extend to the soil surrounding the tanks in accordance with NSW EPA Sampling Design Guidelines. Testing must include at least asbestos, heavy metals, TRH, BTEX, PAHs, and other COPCs associated with the subsurface pit, unless otherwise justified.
- 6. Any material moved from VRS Development or the Town Centre Excavation cannot be used within the proposed School site.
- 7. A Section A Audit is required at completion of the validation works.

Based on the PSI, it was Geotechnique's opinion that the conclusions drawn in the EI RAP October 2023, as well as Geosyntec SAS and SAR October 2023R considered relevant, and the site could be made suitable for the proposed school uses including day care centre, preschool, primary school and high school if the site is remediated / managed in accordance with the RAP subject to compliance with the conditions endorsed by the Auditor.

Based on the RAP, the contaminated soil would be excavated and disposed offsite and / or relocated for management within the broader development (i.e. road corridor) during the remediation works.

5.3 Executive Summary of Auditor SAR KJL254 School SctA

It is understood that remediation and validation works for the site had been completed.

The Auditor's SAR and associated SAS considered investigation works conducted by DP, IT Environmental, EnRiskS, AECOM, Trace, El Australia and ADE to form an opinion on whether the site is suitable for the proposed school (including daycare centre, preschool, primary school and secondary school) use.

The following executive summary was extracted from the Auditor's SAR KJL254 School SctA dated 4 November 2024:

12

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

"SH Melrose PP Land Pty Ltd (SH) commissioned Geosyntec Consultants Pty Ltd (Geosyntec) to provide an independent review of the appropriateness of environmental works completed at the Northern Melrose Park Precinct (the Precinct) and to form an opinion whether the Precinct can be made suitable for the proposed mixed use residential/commercial, public open space and school. The Precinct is being redeveloped in a staged manner with staged investigation, remediation and audits.

This audit has been prepared a portion of the Precinct and includes the approximately 9,925m² area of land located at 84 Wharf Road, Melrose Park, NSW and legally identified as part Lot 2 DP1303954 (proposed Lot 9 DP1310509). The site is proposed to be redeveloped as a School (primary or secondary). The boundary of this Audit is shown in the Survey Plan prepared by LTS (Ref: 41367 216SA dated 4/11/2024) included in Appendix A.

This Audit Report (SAR KJL254 Melrose SctA) and associated Site Audit Statement (SAS KJL254 Melrose SctA) were produced by Kylie Lloyd (Accreditation No. 0302). The Audit has reviewed investigation works conducted by DP, IT Environmental, AECOM, Trace Environmental, El Australia, EnRiskS, and ADE.

This is a statutory Audit as defined under Part 4, Section 47 of the Contaminated Land Management Act (1997) (CLM Act), as amended. This audit report has been written in accordance with guidelines made or approved by NSW EPA. This audit report makes reference to requirements contained within Conditions 81, 82, 83, 119 and 120 of DA/1100/2021/A, issued by the City of Parramatta Council dated 7 June 2024.

The School site was part of the former Reckitt Benckiser property, which historically manufactured household chemicals. The historical land uses identified potential contaminants of concern (COPCs) including total recoverable hydrocarbon (TRH), benzene, toluene, ethyl benzene, xylenes, naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH), heavy metals, asbestos, organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), polychlorinated biphenyls (PCBs), phenols, volatile organic compounds (VOCs), per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The consultants have variously assessed the identified COPCs in soil, groundwater and soil vapour, noting that the investigations conducted at the School site was conducted together with the investigation at the Melrose Park Development.

The investigation results at the proposed School site indicate:

- Selected heavy metals, TRH, OCPs, VOCs, and asbestos were detected above criteria in soils and require remediation and/or management.
- Selected heavy metals (particularly nickel and zinc), TRH, VOCs, were detected above criteria in groundwater and require further assessment and/or management.
- VOCs were detected in soil vapour samples above the laboratory limit of reporting for a number of samples where no available Australian criteria were present. There are data gaps in the soil vapour assessments given only limited number of samples could be sampled.

The remedial approach included excavation and offsite disposal of friable asbestos hotspots, removal of non-friable asbestos from one hotspot and removal of fill from the School site for later use beneath road. The remainder of the fill was considered suitable for use under road.

Groundwater and soil vapour results were assessed to present an unacceptable risk.

The investigation and remedial action plan reports reviewed are considered to have met the requirements of EPA (2017), other relevant guidelines endorsed under s.105 of the CLM Act and the objectives of the Site Audit. Where the consultant's work deviated from the guidelines, the Auditor has discussed this within this audit report and is satisfied that these omissions do not affect the conclusions of the Audit.

On this basis a Section A SAS will be issued certifying that, in the opinion of the Auditor, the site is suitable for daycare centre, preschool, primary school and secondary school uses.

As this is a staged development and works on the surrounding development will receive excess fill from the School site, this fill is to be placed under the road and final placement is to be tracked. Tracking of this material and assessment of suitability should be provided in the relevant validation report(s) where the material is finally placed."

5.4 Detailed Site Investigation

The objectives of the DSI were to determine the contamination status of the soil in borehole locations in conjunction with intrusive geotechnical investigation, to assess the suitability of the site for the proposed land use, and to make recommendations with regard to any future remedial works if required.

In order to achieve the objectives of this assessment, the scope of work included review of the PSI report prepared by Geotechnique and Section A Site Audit Report prepared Site Auditor Ms Kylie Lloyd, site inspection, as well as confirmatory soil sampling and laboratory testing.

5.4.1 Sampling, Analysis, Quality Plan and Sampling Methodology

On 2 and 3 December 2024, our Environmental Scientist carried out sampling in five locations BH1 to BH5 nominated for geotechnical investigation across the site.

Reference may be made to Drawing No 20468/4-AA1 for details of the above-mentioned borehole locations.

The sampling procedures adopted for the assessment were generally as follows:

- The boreholes were drilled using a stainless steel auger mounted on an excavator, over the depth interval nominated by the Environmental Scientist. The representative soil sample was recovered directly from the central of auger using a stainless steel trowel.
- The stainless steel trowel was decontaminated prior to use between each sampling location, in order to prevent cross contamination.
- To minimise the potential loss of organic compounds the recovered soil sample for laboratory analysis was immediately transferred to a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.
- All the recovered soil samples were screened, using a calibrated PID, to screen for the presence or otherwise of VOC. A soil sample for PID screening was placed in an airtight polyethylene bag, ensuring enough air space ('headspace') above the sample is present to be screened in the field. The soil sample remained in the bag for approximately 15 minutes before being shaken (to thoroughly mix soil with the air in the headspace) and a PID reading recorded. The PID readings are summarised in engineering borehole logs in Appendix B and a copy of PID calibration sheets is presented in Appendix C.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

• The recovered soil sample for asbestos analysis was transferred into a small plastic zip-lock bag, which was placed inside a container.

In order to ensure the analytical performance of the primary laboratory, duplicate and split samples were prepared for analysis. Soil samples were kept in a labelled laboratory supplied glass jar (acid-washed and solvent-rinsed) and sealed with an airtight screw Teflon top lid. The fully filled jar was placed in a chilled container.

The following table summarising the primary sample and the corresponding duplicate / split sample recovered and analysed. As shown in the table prepared, the split sample was prepared from primary sample which was not the same as that prepared for duplicate sample.

Primary Sample	Corresponding Duplicate	Primary Sample	Corresponding Split	
BH1 (0.0-0.15m)	DDS1	BH2 (0.0-0.15m)	DSS1	

A rinsate water sample was collected at completion of sampling at each day of field work and placed in a glass bottle and vial supplied by the laboratory. The fully filled bottle and vial were labelled and placed in a chilled container.

The primary samples in the chilled container with trip spike sample were forwarded under COC conditions to the primary NATA accredited laboratory, SGS Environmental Services (SGS). The split samples in the chilled container were forwarded under COC conditions to the secondary NATA accredited laboratory, Envirolab Services Pty Ltd (Envirolab). On receipt of the samples, the laboratories returned the Sample Receipt Advice verifying the integrity of all the samples received.

Samples for asbestos analysis in plastic bags within the container were delivered to a NATA accredited testing laboratory, Australian Safer Environment & Technology Pty Ltd (ASET). All samples were sent to the laboratory with completed form. On receipt of the samples, the laboratory returned a signed COC, acknowledging the receipt of samples and verifying the integrity of all the samples received.

Based on the site observation and the soil profiles encountered, the following laboratory analysis plan was implemented:

• Three (3) fill samples and eleven (11) natural soil samples, as well as the corresponding duplicate sample DDS1 and split sample DSS1 were analysed for metals.

3 fill samples, four (4) natural soil samples, as well as the corresponding duplicate sample DDS1 and split sample DSS1 were analysed for TRH, BTEX and PAH for screening purposes.

3 fill samples, 2 natural soil samples, as well as the corresponding duplicate sample DDS1 and split sample DSS1 were analysed for OCP, OPP, PCB and Phenols for screening purposes.

- 2 fill samples and 4 natural soil samples were selected for analysis of Cation Exchange Capacity (CEC) and pH.
- 3 fill samples and 2 natural soil samples were analysed for asbestos for screening purposes.
- Rinsate samples RS1 and RS2 were analysed for metals, TRH, BTEX and PAH.
- Trip spike samples TS1 and TS2 were analysed for BTEX.

5.4.2 Assessment Criteria

Investigation levels and screening levels developed in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 (April 2013) were used for the assessment, as follows:

Risk-based Health Investigation Levels (HIL) for a broad range of metals and organic substances. The HIL are applicable for assessing human health risk via all relevant pathways of exposure. The HIL as listed in Table 1A (1) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" are provided for different land uses.

The site is proposed for a new high school land use and as such the analytical results for the assessment will be assessed against the available HIL for *public open space including secondary schools* (HIL C).

Health Screening Levels (HSL) for selected petroleum compounds, fractions and Naphthalene are applicable for assessing human health risk via inhalation pathways. The HSL depend on specific soil physicochemical properties, land use scenarios and the characteristics of building structures. The HSL listed in Table 1A(3) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" apply to different soil types and depths below surface to >4 m.

For this assessment, the analytical results will be assessed against the available HSL for clay to depth of 0m to >2m for *recreational / open space* (HSL C).

Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds, TPH fractions and BaP are applicable for assessing the risk to terrestrial ecosystems. ESL listed in Table 1B(6) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" broadly apply to coarse and fine-grained soils and various land uses and are generally applicable to the top 2m of soil.

For this assessment, the analytical results will be assessed against the available ESL for fine-grained soil (clay) for *public open space* land use.

Ecological Investigation Levels (EIL), a specific type of Soil Quality Guidelines (SQG) for selected metals, Naphthalene and DDT are applicable for assessing the risk to terrestrial ecosystems. EIL listed in Table 1B(1-5) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil. The EIL are calculated using 30% effect concentration (EC30) or lowest observed effect concentrations (LOEC) toxicity data.

For this assessment, the analytical results will be assessed against the available EIL for aged contamination in soil for *public open space* land use.

For arsenic, Naphthalene and DDT, generic EIL for urban residential are adopted for aged contaminants. For other metals, EIL are the sum of the added contaminant limit (ACL) and the ambient background concentration (ABC). Where available, EIL are calculated using the EIL calculator developed by CSIRO for NEPC.

For asbestos assessment, the adopted assessment criteria are:

- 0.02% w/w for bonded ACM for recreational land use;
- 0.001% for friable asbestos in soil; and
- No visible asbestos for surface soil.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

The soil will be deemed contaminated if the above criteria are unfulfilled. Further investigation, remediation and / or management will be recommended if the soil is found to be contaminated.

5.4.3 Summary of Site and Field Observation

At the time of inspection by an Environmental Scientist from Geotechnique on 2 and 3 December 2024, it was noted the site appeared to comprise a vacant portion of a larger construction site subject to bulk earth moving activities.

Recent soil stripping / earthwork activities were noted throughout the site, extremely weathered bedrock profile was noted on the side cut of the proposed road adjoining the north of the site, and natural soil was noted on the cut area of the south side of the site boundary.

Waterlogging / puddles were noted throughout the site as residual from recent deluge.

There were no obvious features associated with any underground storage tanks (bowser, breather pipe, inlet valve and piping) or odour that would indicate the potential for contamination.

Soil logs was completed during the field investigation. The soil logs recording soil lithology and depth were as presented in table below. Logging of soil profiles was carried out in accordance with AS1726-2017 Australian Standard Geotechnical Site Investigations.

Borehole	Depth Interval (m)	Soil Profile	Fill or Natural	Inclusion	Fill Thickness (m)
BH1	0.0-0.15	Gravelly Clay, low plasticity, grey	Fill		0.15
БПІ	0.15-2.64	SHALE, brown-grey, highly or moderately weathered, low to medium or medium strength	Natural shale		
0.0-0.3		Gravelly Clay, low plasticity, brown-grey	Fill		0.3
BH2	0.3-2.95	SHALE, brown-grey or grey, highly to moderately or moderately weathered, low strength with clay lenses, or low to medium strength	Natural shale		
BH3	0.0-0.3	Silty CLAY, medium to high plasticity, brown mottled grey, with shale fragments	Natural clay		
	0.3-0.8	SHALE, medium to high plasticity, brown to orange	Natural shale		
	0.0-0.15 Gravelly Clay, low plasticity, grey		Fill		0.15
BH4	0.15-1.63	SHALE, brown-grey, highly to moderately or moderately weathered, low to medium or medium strength	Natural clay		
BH5	0.0-0.8	Silty CLAY, medium to high plasticity, brown mottled grey	Natural shale		
	0.8-0.85	SHALE, grey, highly to moderately weathered, low to medium strength, with ironstone	Natural shale		

The PID readings on all recovered soil samples, as presented in engineering borehole logs in Appendix B, were equal to zero, suggesting that the presence of volatiles in the fill is unlikely.

There were no obvious fibro-cement fragments and foreign materials, no detectable odour and no obvious staining / discolouration of the soil and vegetation in the borehole locations and recovered soil samples that would indicate potential for contamination.

5.4.4 Assessment of Laboratory Test Results

The test results for field quality assurance (QA) and quality control (QC) samples including rinsate, trip spike, duplicate and split samples are presented in Tables A to D. The laboratory test results for the analysed soil samples are presented in Tables E to I together with the assessment criteria adopted. A copy of the laboratory analytical reports and certificate of analysis is included in Appendix D.

The laboratory test results indicated that:

- The concentrations of metals were below the relevant available HIL C and / or EIL (Tables E1 and E2).
- The concentrations of F1 (TRH C6-C10 less BTEX), F2 (TRH >C10-C16 less Naphthalene and TRH>C10-C16), F3 (TRH >C16-C34), F4 (TRH >C34-C40) and BTEX were below the relevant available ESL adopted (Table F). Moreover, the test results of F1, F2, F3, F4 and BTEX were less than the laboratory limits of reporting (LOR).

There was no HSL C (not limiting) for clay/shale for F1, F2 (TRH >C10-C16 less Naphthalene) and BTEX in all depths.

All the concentrations of BaP TEQ, Total PAH, Naphthalene and BaP were well below the relevant HIL C, EIL and / or ESL (Table G). Moreover, the test results of BaP TEQ, Total PAH, Naphthalene and BaP were less than the laboratory LOR.

There was no HSL C (not limiting) for clay for Naphthalene in all depths.

- The concentrations of OCP were well below the relevant HIL C and less than the laboratory LOR (Table H). Concentrations of DDT were also below the EIL.
- The concentrations of Chlorpyrifos (OPP) were well below the HIL C and less than the laboratory LOR (Table H).
- > The concentrations of PCB were below the HIL C and less than laboratory LOR (Table H).
- The concentrations of Phenols were well below the HIL C and less than the laboratory LOR (Table H).
- No ACM (>7mm) was detected at the LOR of 0.01% w/w, which was below the soil assessment criterion of 0.02% w/w (Table I). No asbestos fines (AF) and fibrous asbestos (FA) was detected at the LOR of 0.001% w/w, which was below the soil assessment criterion (0.001% w/w).

5.5 Site Characterisation

The remediation and validation works for the site had been completed.

Site Auditor Ms Kylie Lloyd of Geosyntec had issued SAS and SAR November 2024 and considered the site is suitable for the proposed school (including daycare centre, preschool, primary school and secondary school) use.

20468/5-AA.v1 Proposed Melrose Park High School 37 Hope Street, Melrose Park

At the time of site inspection during the field works for this assessment by our Environmental Scientist on 2 and 3 December 2023, the site appeared to comprise a vacant portion of a larger construction site subject to bulk earth moving activities.

During the intrusive investigation for combined geotechnical and contamination assessment by Geotechnique, 5 boreholes were drilled. Fill material was encountered at depths ranging from approximately 0.15m to 0.3m below the EGL in borehole locations BH1, BH2 and BH4.

There were no obvious fibro-cement /potential asbestos fragments and foreign materials, no detectable odour and no obvious staining / discolouration of the soil and vegetation in the borehole locations and recovered soil samples that would indicate potential for contamination.

The PID readings on all recovered soil samples were equal to zero, suggesting that the presence of volatiles in the fill is unlikely.

No groundwater or perched water was encountered during sampling in conjunction with geotechnical investigation to a maximum depth of approximately 5.5m below the EGL and during the short time the boreholes remained open.

A confirmatory sampling and testing for screening purposes were conducted in order to determine / ascertain the contamination status of the soil in borehole locations in conjunction with intrusive geotechnical investigation. A number of the recovered fill samples were selected for analysis of CoPC including metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and / or Asbestos.

There were no elevated concentrations of analytes detected in the samples analysed. All the laboratory test results for confirmatory soil sampling and laboratory testing for this DSI satisfied the criteria for stating that the analytes selected are either not present i.e. concentrations less than laboratory limits of reporting or present in the sampled soil at concentrations that do not pose a risk of hazard to human health or the environment under the condition for the proposed high school land use.

Based on the forgoing, it is our opinion that no further site investigation and remediation are deemed necessary. Therefore, the site is environmentally suitable for the proposed Melrose Park High School development.

6.0 POTENTIAL CONTAMINATION CONSTRAINTS OR RISKS

Based on this assessment, no contamination is identified within the site, subsequently, no further remediation is required.

Based on anticipated site conditions, the potential constraints or risks on proposed high school construction are unexpected findings of suspect material during any stage of future earthworks / site preparation, which can be appropriately managed in accordance with the recommended unexpected finds management protocol in Appendix E of this report.

7.0 MITIGATION MEASURES FOR CONTAMINATION RISKS

The following table presents recommended mitigation measure for the identified unexpected finds.

Project Stage	Mitigation Measures	Reason for Mitigation Measures	Relevant Section of Report
Construction (C)	In the event of unexpected finds, carry out contamination assessment and prepare a RAP if contamination is identified in consultation with Independent Site Auditor	To determine the presence or otherwise of an unacceptable risk to human health and environment and to manage the site suitable for the proposed high school land use	Appendix E

8.0 SIGNIFICANCE OF ENVIRONMENTAL IMPACTS

Based on nature of potential contamination risks or issues at the site, it is our assessment that the potential impacts of the development work or activity can be appropriately managed in accordance with the recommended unexpected finds management protocol. Therefore, from contamination consideration, it is determined that the extent and nature of potential impacts from the proposed development work or activity are "Low" and will not have significant impact on the locality, community and / or the environment.

9.0 CONCLUSION AND RECOMMENDATIONS

The findings of this DSI are summarised as follows:

- The remediation and validation works for the site had been completed.
- Site Auditor Ms Kylie Lloyd of Geosyntec had issued SAS and SAR November 2024 and considered the site is suitable for the proposed school (including daycare centre, preschool, primary school and secondary school) use.
- The site appeared to comprise a vacant portion of a larger construction site subject to bulk earth moving activities at the time of sampling and site inspection in December 2024.
- All the laboratory test results for confirmatory soil sampling and laboratory testing satisfied the criteria for stating that the analytes selected are either not present i.e. concentrations less than laboratory limits of reporting or present in the sampled soil at concentrations that do not pose a risk of hazard to human health or the environment under the condition for the proposed new high school land use.
- No further site investigation and remediation are deemed necessary.

Based on this assessment, it is Geotechnique's opinion that the conclusions drawn in the Geosyntec SAS and SAR November 2024 considered relevant, and the site is considered suitable for the proposed Melrose Park high school land use.

If suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces / pipes, ash material, imported fill materials [which are different to those encountered during this and previous assessments], etc.) are encountered during any stage of future earthworks / site preparation, we recommend that this office is contacted for assessment and an unexpected finds management protocol in Appendix E of this report should be implemented.

For any materials to be excavated and removed from the site, it is recommended that waste classification of the materials, in accordance with the "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA 2014; NSW EPA resource recovery exemptions and orders under the Protection of the Environment Operations (Waste) Regulation 2014; or NSW EPA *Certification: Virgin excavated natural material* is undertaken prior to disposal at a facility that can lawfully accept the materials.

Any imported soil (fill) must be assessed by a qualified environmental consultant, prior to importation, to ensure suitability for the proposed use. In addition, the imported fill must not contain asbestos and ash, be free of unusual odour, not discoloured and not acid sulphate soil or potential acid sulphate soil. The imported fill should either be virgin excavated natural material (VENM) or excavated natural material (ENM).

10.0 LIMITATIONS

The services performed by Geotechnique in preparing this report were conducted in a manner consistent with the level of quality and skill generally exercised by members of the profession and consulting practice.

This report has been prepared for the purposes stated within. This report can also be relied upon by SINSW, DoE and relevant authorities for development and building application assessment processes. Any reliance on this report by other parties shall be at such parties' sole risk as the report might not contain sufficient information for other purposes.

This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval is provided by Geotechnique.

The information in this report is considered accurate at the date of issue, in accordance with current site conditions during site inspection and field sampling for this DSI (2 and 3 December 2024). Any variations to the site form or use beyond those dates could nullify the conclusion stated.

No contamination assessment can eliminate all risk; even a rigorous professional assessment might not detect all contamination within a site. Whilst the assessment conducted at the site was carried out in accordance with current NSW guidelines, the potential always exists for contaminants and contaminated soils to be present between sampled locations.

Presented in Appendix F is a document entitled "Environmental Notes", which should be read in conjunction with this report.

LIST OF REFERENCES

Acid Sulphate Soil Manual - New South Wales, Acid sulphate Soil Management Advisory Committee 1988 Acid Sulphate Soil Risk Map (Edition 2, 1:25,000) of Prospect / Parramatta River - Department of Land and Water Conservation 1997Contaminated Land Management Act 1997

Australian Standard AS1726-2017, Geotechnical Site Investigation 2017

Contaminated Land Guidelines Sampling Design Part 1 - Application – NSW EPA 2022

Contaminated Land Management Act 1997

Contaminated Land Management Regulation 1998

Geology of the Sydney 1:100,000 Sheet (9130) – Geological Survey of New South Wales, Department of Minerals and Energy 1983

Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia

National Environment Protection (Assessment of Site Contamination) Measures, 1999 (April 2013) -National Environmental Protection Council

Protection of the Environment Operations Act - 1997

Resource Recovery Order / Exemption Under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 – The Excavated Natural Material Order / Exemption 2014 NSW Environment Protection Authority

SINSW website: https://www.schoolinfrastructure.nsw.gov.au/

Sydney Soil Landscape of the Sydney 1:100,000 Sheet (9130) – Soil Conservation Service Survey of NSW 1989

Salinity Potential in Western Sydney (scale approximately 1:140,000), Department of Infrastructure, Planning and Natural Resources 2002

State Environmental Planning Policy (Resilience and Hazards) 2021 under the Environmental Planning and Assessment Act 1979

The NSW Government PFAS Investigation Program: https://www.epa.nsw.gov.au/yourenvironment/contaminated-land/pfas-investigation-program

Trace Element Concentrations in Soils from Rural and Urban Areas of Australia, Henry Olszowy et al., 1995

Waste Classification Guidelines Part 1: Classifying Waste - NSW EPA 2014

DRAWINGS

Drawing No 20468/3-AA1 20468/4-AA1

Site Layout and Features Borehole Locations

LABORATORY TEST RESULT SUMMARY TABLES

Table A	Rinsate
Table B	Trip Spike
Table C	Duplicate Sample
Table D	Split Sample
Table E	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Discrete Samples
Table F	Total Recoverable Hydrocarbons (TRH) and BTEX Test Results –Discrete Samples
Table G	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples
Table H	Organochlorine Pesticides (OCP), Organophosphate Pesticides (OPP), Polychlorinated Biphenyls (PCB) and Phenols Test Results – Discrete Samples
Table I	Asbestos Test Results – Discrete Samples

RINSATE (Ref No: 20468/5-AA)

TABLE A

SAMPLE RS1 RS2				
DATE	2/12/2024	3/12/2024		
METAL	(mg/L)	(mg/L)		
Arsenic	<0.02	<0.02		
Cadmium	<0.001	<0.001		
Chromium	<0.005	<0.005		
Copper	0.007	0.008		
Lead	<0.02	<0.02		
Mercury	<0.0001	<0.0001		
Nickel	<0.005	<0.005		
Zinc	<0.01	<0.01		
TOTAL RECOVERABLE HYDROCARBON (TRH)	(µg/L)	(µg/L)		
F1 (C6-C10 less BTEX)	<50	<50		
F2 (>C10-C16)	<60	<60		
F3 (>C16-C34)	<500	<500		
F4 (>C34-C40)	<500	<500		
BTEX	(µg/L)	(µg/L)		
Benzene	<0.5	<0.5		
Toluene	<0.5	<0.5		
Ethyl Benzene	<0.5	<0.5		
Xylenes	<1.5	<1.5		
POLYCYCLIC AROMATIC HYDROCARBON (PAH)	(µg/L)	(µg/L)		
Total PAH	<1	<1		
Naphthalene	<0.1	<0.1		
Benzo(a)Pyrene	<0.1	<0.1		

TABLE B TRIP SPIKE (Ref No: 20468/5-AA)

Sample	Sampling Date	BTEX			
Sample		Benzene	Toluene	Ethylbenzene	Xylenes
TS1 TS2	2/12/2024 3/12/2024	86% 110%	86% 109%	88% 112%	89% 109%

Note : results are reported as percentage recovery of known spike concentrations

TABLE C DUPLICATE SAMPLE (Ref No: 20468/5-AA)

•

	BH1	, DDS1	RELATIVE PERCENTAGE
ANALYTE	0.0-0.15 (m)		DIFFERENCES (RPD)
	mg/kg	mg/kg	%
Arsenic	8	8	0
Cadmium	<0.3	<0.3	-
Chromium	5.3	5.2	2
Copper	27	27	0
Lead	20	19	5
Mercury	<0.05	<0.05	-
Nickel	7.6	7.6	0
Zinc	49	49	0
TOTAL RECOVERABLE HYDROCARBONS (TRH)			
F1 (C6-C10 less BTEX)	<25	<25	-
F2 (>C10-C16)	<25	<25	-
F4 (>C34-C40)	<120	<120	-
BTEX			
Benzene	<0.1	<0.1	-
Toluene	<0.1	<0.1	-
Ethyl Benzene	<0.1	<0.1	-
Xylenes	<0.3	<0.3	-
POLYCYCLIC AROMATIC HYDROCARBONS			
Benzo(a)Pyrene TEQ	<0.3	<0.3	-
Total PAH	<0.1	<0.1	-
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene	<0.1	<0.1	-
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.2	<0.2	-
Endrin	<0.1	<0.1	-
Methoxychlor	<0.1	<0.1	-
Mirex	<0.1	<0.1	-
Endosulfan (alpha, beta & sulphate)	<0.3	<0.3	-
DDD+DDE+DDT	<0.3	<0.3	-
Chlordane (alpha & gamma)	<0.2	<0.2	-
ORGANOPHOSPHATE PESTICIDES (OPP)			
Chlorpyrifos (Chlorpyrifos Ethyl)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<0.1	<0.1	-
Phenols	<0.5	<0.5	-

GEOTECHNIQUE PTY LTD

TABLE D SPLIT SAMPLE (Ref No: 20468/5-AA)

	BH2		RELATIVE PERCENTAGE
ANALYTE	0.0-0.15 (m)	DSS1	DIFFERENCES (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
Arsenic	5	10	67
Cadmium	<0.3	<0.4	-
Chromium	14	26	60
Copper	29	24	19
Lead	17	28	49
Mercury	<0.05	<0.1	-
Nickel	16	9	56
Zinc	81	42	63
TOTAL RECOVERABLE HYDROCARBONS (TRH)			
F1 (C6-C10 less BTEX)	<25	<25	-
F2 (>C10-C16)	<25	<50	-
F3 (>C16-C34)	<90	<100	-
F4 (>C34-C40)	<120	<100	-
BTEX			
Benzene	<0.1	<0.2	-
Toluene	<0.1	<0.5	-
Ethyl Benzene	<0.1	<1	-
Xylenes	<0.3	<1	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
Benzo(a)Pyrene TEQ	<0.3	<0.5	-
Total PAH	<0.1	<0.05	-
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene	<0.1	<0.05	-
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.2	<0.2	-
Endrin	<0.1	<0.1	-
Methoxychlor	<0.1	<0.1	-
Endosulfan (alpha (I), beta (II) & sulphate)	<0.3	<0.3	-
DDD+DDE+DDT	<0.3	<0.1	-
Chlordane (alpha & gamma)	<0.2	<0.2	-
ORGANOPHOSPHATE PESTICIDES (OPP)			
Chlorpyriphos	<0.2	<0.1	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<0.1	<0.1	-
Phenols	<0.5	<5	-

TABLE E1 METAL, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES (FILL)

(Ref No: 20468/5-AA)

					MET	AL (mg/kg)					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (amol _c /kg)	Hd
FILL											
BH1	0.0-0.15	8	<0.3	5.3	27	20	<0.05	7.6	49	-	-
BH2	0.0-0.15	5	<0.3	14	29	17	<0.05	16	81	28	7.2
BH4	0.0-0.15	5	<0.3	5.8	22	15	<0.05	17	63	5	5.6
Limit of Reporting (LOR)		1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	0.1
NATIONAL ENVIRONMENT PROTECTION (2013)	AMENDMENT MEASURE										
Health-based Investigation Levels (HIL) ^a C	- Recreational C	300	90	300 °	17000	600	13 d	1200	30000		
Ecological Investigation Levels (EIL) ^b - Pub	lic open space	100 e	-	190 ^f	110	1200 g	-	35	270		

Notes: a: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

b: EIL of aged chromium (III), copper, nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; Old Suburb with Low Traffic; the lowest CEC=5 cmolc/kg & pH=5.6; the assumed clay content=1 % were selected for derivation of EIL; a conservative approach.

c: Chromium (VI)

d: Methyl Mercury

e: Generic EIL for aged arsenic

f: Chromium (III)

g: Generic added contaminant limit for aged lead + ambient background concentration; Old Suburb with Low Traffic.

TABLE E2 METAL, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES (NATURAL SOIL)

(Ref No: 20468/5-AA)

				/	MET	AL (mg/kg)					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (cmol _c /kg)	Hd
Natural Soil											
BH1 BH1	0.2-0.3 1.0-1.1	5 10	<0.3 <0.3	5.2 5.3	22 29	15 21	<0.05 <0.05	4.7 7.8	35 49	- 2.5	- 5.5
BH2	0.35-0.45	4	<0.3	6.6	27	16	< 0.05	6.0	43	-	-
BH3	0.0-0.15	7	<0.3	6.2	6.5	10	<0.05	<0.5	45 2	3.8	5.0
BH3	0.35-0.45	4	< 0.3	4.1	5.7	12	<0.05	<0.5	<2	3.8	4.9
BH4	0.2-0.3	5	< 0.3	4.9	18	13	< 0.05	3.0	25	-	-
BH4	1.2-1.3	8	< 0.3	6.6	26	15	< 0.05	6.0	43	11	5.5
BH5	0.0-0.15	5	<0.3	12	5.1	15	<0.05	<0.5	3	-	-
Limit of Reporting (LOR)		1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	0.1
NATIONAL ENVIRONMENT PROTECTI Health-based Investigation Levels (HIL) ^a		300	90	300 °	17000	600	13 d	1200	30000		
Ecological Investigation Levels (EIL) ^b - P	ublic open space	100 e	-	190 ^f	60	1200 g	-	10	150		

Notes: a: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

b: EIL of aged chromium (III), copper, nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; Old Suburb with Low Traffic; the lowest CEC=2.5 cmolc/kg & pH=4.9; the assumed clay content=1 % were selected for derivation of EIL; a conservative approach.

c: Chromium (VI)

d: Methyl Mercury

e: Generic EIL for aged arsenic

f: Chromium (III)

g: Generic added contaminant limit for aged lead + ambient background concentration; Old Suburb with Low Traffic.

GEOTECHNIQUE PTY LTD

TABLE F TOTAL RECOVERABLE HYDROCARBONS (TRH) AND BTEX TEST RESULTS DISCRETE SAMPLES

-												N	IOITA	NAL EN	VIRON	MENT	PROTE	стіс	N AM	ENDM	IENT M	IEAS	URE (2013)	
				TRH ((mg/kg))			BTEX	(mg/kg)	He		creenin eational	•	`	,	Eco	ologica		ening L so blic ope	il		ne-gra	ined
Sample Location	Depth (m)	Soil type	F1	F2*	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2*	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
BH1	0.0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH1	0.2-0.3	Shale	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH2	0.0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH3	0.0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH4	0.0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH4	1.2-1.3	Shale	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
BH5	0.0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	NL	NL	NL	NL	NL	NL	180	120	1300	5600	65	105	125	45
Limit of Rep	porting (LOR)		25	25	25	90	120	0.1	0.1	0.1	0.3														
Notes:	F1:	C6-C10 less	BTEX																						

F2*: >C10-C16 less Naphthalene

F2**: >C10-C16

F3: >C16-C34

F4: >C34-C40

NL: Not Limiting

TABLE G

POLYCYCLIC AROMATIC HYDROCARBONS (PAH) TEST RESULTS

							1	-	E SAMPLES		
			-				<u> </u>			CTION AMENDMENT MEAS	JRE (2013)
				PAH	(mg/k	g)	Levels (l Investigation (HIL) C ^a tional C	Health Screening Level (HSL) C - Recreational / open space	Generic Ecological Investigation Level (EIL) - Public open space	Ecological Screening Lev (ESL) - Public open space
Sample Location	Depth (m)	Soil type	BaP TEQ	TOTAL PAHs	NAPHTHALENE	BENZO(a)PYRENE (BaP)	BaP TEQ	TOTAL PAHS	NAPHTHALENE	NAPHTHALENE	BENZO(a)PYRENE (BaP)
BH1	0.0-0.15	Clay	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH1	0.2-0.3	Shale	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH2	0.0-0.15	Clay	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH3	0.0-0.15	Clay	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH4	0.0-0.15	Clay	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH4	1.2-1.3	Shale	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BUIE	0.0-0.15	Clay	<0.3	<0.1	<0.1	<0.1	3	300	NL	170	0.7
BH5											

NL: Not Limiting

TABLE H ORGANOCHLORINE PESTICIDES (OCP), ORGANOPHOSPHATE PESTICIDES (OPP), POLYCHLORINATED BIPHENYLS (PCB) & PHENOLS TEST RESULTS DISCRETE SAMPLES

(Ref No: 20468/5-AA)

						00	CP (mg/kg)					(mg/kg)	(mg/kg)	(mg/kg)
Sample Location	Depth (m)	HEXACHLOROBENZENE (HCB)	HEPTACHLOR	ALDRIN+DIELDRIN	ENDRIN	METHOXYCHLOR	MIREX	ENDOSULFAN (alpha, beta & sulphate)	DDD+DDE+DDT	DDT	CHLORDANE (alpha & gamma)	Chlorpyrifos (Chlorpyrifos Ethyl)	PCB	Phenols
BH1	0.0-0.15	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.2	<0.2	<0.1	<0.5
BH2	0.0-0.15	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.2	<0.2	<0.1	<0.5
BH3	0.0-0.15	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.2	<0.2	<0.1	-
BH4	0.0-0.15	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.2	<0.2	<0.1	<0.5
BH4	1.2-1.3	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
BH5	0.0-0.15	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.2	<0.2	<0.1	<0.5
Limit of Reporting (LOR)		0.1	0.1	0.2	0.1	0.1	0.1	0.3	0.3	0.1	0.2	0.2	0.1	0.5
NATIONAL ENVIRONMENT PR (2013) Health-based Investigation Leve	OTECTION AMENDMENT MEASURE	10	10	10	20	400	20	340	400		70	250	1	40000
Ecological Investigation Levels (EIL) - Public open space									180 ^b				

Notes: a: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

b: Generic EIL for DDT

TABLE I ASBESTOS TEST RESULTS DISCRETE SAMPLES (Ref No: 20468/5-AA)

Sample Location	Depth (m)	ASE	BESTOS (% w/w)	
Soil Sample		Bonded ACM (>7mm)	AF	FA
BH1	0.0 - 0.15	<0.01	<0.001	<0.001
BH2	0.0 - 0.15	<0.01	<0.001	<0.001
BH3	0.0 - 0.15	<0.01	<0.001	<0.001
BH4	0.0 - 0.15	<0.01	<0.001	<0.001
BH5	0.0 - 0.15	<0.01	<0.001	<0.001
Limits of R	eporting (LOR)	0.01	0.001	0.001
NATIONAL ENVIRONMEN AMENDMENT MEASURE				
Health Screening L	evels ^a - Recreational C	0.02	0.001	0.001

Notes:

ACM: Asbestos Containing

AF: Asbestos Fines

FA: Fibrous Asbestos

a: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

APPENDIX A

REF REQUIREMENTS CHECKLIST

REF Review Checklist

Template Reference: DOC24/3137063 Revision 1 December 2024

Project details

Project name:

New Melrose Park High School

Purpose and limitations

This checklist is intended to assist project and consultant teams in checking that Reviews of Environmental Factors (REF) appropriately assess a proposed activity and address legislative requirements. It seeks to address common requirements, does not address every potential environmental matter that may be relevant to a site and includes matters that will not be relevant to all sites/proposals. The project consultant town planner is responsible for identifying potential environmental impacts and assessment requirements to consider and mitigate potential impacts.

Adequacy review

Complete the table below to check that the REF and supporting technical investigations have adequately assessed the proposed activity.

Requirement	Y	Ν	N/A	Comments
General requirements				
Regulatory requirements Does the REF include:				
an acknowledgement of County?				
details of:				
 the proposed activity? 				
 need for the activity? 				
 alternatives considered, including the do-nothing option? 				
 relevant planning policies, including relevant indicative layout plans, masterplans, strategic plans or Voluntary Planning Agreements apply to the site? 				
 how proposal relates to relevant legislation and policies? 				
 related approvals required? 				
 relevant determining authority (i.e. the NSW Department of Education) 				
 a description of the site (including address and lot/DP) and surrounding environment using text and plans/photos including details the environmental features and planning constraints? 				
 a description of land / road reserves associated with any off-site works? 				
• a summary of existing approvals and relevant conditions that apply to the site?				
 for existing schools, confirmation that the proposed activity does not contravene a relevant condition of consent? 				
an assessment of potential impacts of the proposal?				
a summary of consultation undertaken, responses received and how responses were considered?				
 a statement certifying that the contents are true and correct? 				
 a conclusion that the proposal is not likely to significantly affect the environment or threatened species, communities or habitats unless a Species Impact Statement (SIS) (for aquatic biodiversity) or (terrestrial) Biodiversity Development Assessment Report (BDAR) 				

New Melrose Park High School | REF Review Checklist | [Insert date] | 2 / 17

has been prepared?	ĺ			
a statement that the proposed activity qualifies as development without consent?				
 a detailed response to the design quality principles set out in the T&I SEPP? 				
a detailed response to the Design for Schools Guide?				NBRS TO ADDRESS IN DESIGN REPORT V2
 where relevant, a detailed response to any School Design Review Panel comments? 				NBRS TO ADDRESS IN DESIGN REPORT V2
a schedule of mitigation measures that are specific and deliverable?				
Has the REF addressed s171 of the EP&A Reg including the environmental factors set out in the <u>October 2024 Addendum</u> for Consideration of environmental factors for health services facilities and schools and s171A (if the site is located in a regulated water catchment)?				
Has the REF been prepared in accordance with the Part 5 Guidelines, including the October 2024 Addendum for Consideration of environmental factors for health services facilities and schools??				
If early engagement has occurred, has the REF summarised the issues raised been summarised and set out how they have been considered?				
Scope	\square			
Does the REF incorporate the relevant scope, including associated works such as additional infrastructure (i.e. substation, pumping stations, roadworks, stormwater etc.)?				
Landowner's detail and consent If owned by 'education', does the REF note that the land is owned by the Minister for Education and Early Learning rather than the department?			\boxtimes	
Has landowner's consent been obtained or has the landowner been notified of the REF? Note: It is the preference Landowner's consent is to be obtained prior to lodgement. However, where this is not possible and for any public domain or road works on council land, the council must be notified of the proposed works prior to lodgement of the REF.				
 Title details Has a copy of the following been obtained to inform the REF: the certificates of title(s) for the site that is/are less than six months old? 				COLLIERS TO ISSUE
the deposited plan?		\boxtimes		COLLIERS TO ISSUE
 any instruments or encumbrances registered over the land? 				
 a detailed survey plan for the site that is less than 12 months old? 				
 Easements and encumbrances Do the survey plan, proposed site plan and civil plans: clearly detail existing easements and encumbrances? 				
 demonstrate that no buildings, works, structures, earthworks, trenches or other activities would contravene or impinge upon any easement or encumbrance over the site unless with written approval of the easement beneficiary? 				
Plans Does the REF reasonably depict the proposed activity in figures, plans and/or photomontages including indicative details of: • overall layout? • maximum height and footprint of buildings? • elevational treatment of buildings? • tree planting and general landscape treatment?				
Attachments				

 \odot \odot

New Melrose Park High School | REF Review Checklist | [Insert date] | 3 / 17

Doe	es the REF list documents (with revision numbers and			
dat	es) that form part of the REF and are relied upon to			
	ess the proposed activity? es the REF list include a list of all mitigation measures in			
Арр	pendix 1?			
	es the REF reference and list all figures and tables?			
	minology			
Doe	es the REF use appropriate terminology for a REF:			
٠	"activity" instead of "development"?			
•	"NSW Department of Education" shortened to "the			
	department" instead of "School Infrastructure NSW" or			
	"SINSW"?		[
•	"Proponent" instead of "Applicant"?			
•	"Mitigation measures" instead of "conditions"?			
	nsport and accessibility			
	es the REF include a Transport and Accessibility Impact	\boxtimes		
	sessment (TAIA)?			
	A / early consultation		\boxtimes	OUTSTANDING
	es the TAIA summarise the work undertaken as part of,			
	I the findings of, a Rapid Transport Assessment (RTA)?		\boxtimes	 Require proposed responses to
	Transport Working Group (TWG) process, including			TWG consultation outcomes
	ues raised by transport agencies and proposed			
	ponses?			
	sting conditions	\boxtimes		
Doe	es the TAIA describe the existing road network, including:			
•	the wider state network and local network?			
٠	speed and parking restrictions?	\boxtimes		
•	public transport?	\boxtimes		
•	pedestrian infrastructure?	\boxtimes		
•	any known read actaty issues?		[
	any known road safety issues?			TTW to advise
•	any significant infrastructure gaps identified?			TTW to advise
•				
• Co	any significant infrastructure gaps identified?			
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site			
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per			
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day?			
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the			
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements			
• Coi •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management?			TTW to advise
• Co	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers			
• Coi •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available			TTW to advise
• Coi •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers			TTW to advise
• Coi •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental			TTW to advise
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that			TTW to advise Needs further detail and assessment
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to			TTW to advise Needs further detail and assessment
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and			TTW to advise Needs further detail and assessment
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians?			TTW to advise Needs further detail and assessment
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA:			TTW to advise Needs further detail and assessment
• Con Doe •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to:			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to:			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to: o proposed number of students and staff?			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to: o proposed number of students and staff? o assumed travel mode share for the school developed having regard to: • existing mode share			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to: • proposed number of students and staff? • assumed travel mode share for the school developed having regard to: • existing mode share • proposed measures to reduce car-based travel			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to: • proposed number of students and staff? • assumed travel mode share for the school developed having regard to: • existing mode share • proposed measures to reduce car-based travel • mode shares achieved for schools with similar			TTW to advise Needs further detail and assessment
• Con Doe • • • •	any significant infrastructure gaps identified? nstruction traffic es the TAIA: set out proposed construction vehicle routes and site access arrangements and estimated movements per day? include a high level assessment of / conclusion that the local road network could accommodate the movements subject to appropriate management? set out parking arrangements for construction workers and conclude that sufficient parking would be available on site / proposed arrangements would avoid detrimental impacts to local roads? set out whether works zones are required? include a preliminary construction management plan that details management and mitigation measures to minimise impacts and ensure safety of road users and pedestrians? erational traffic es the TAIA: estimate the expected trip generation as a result of the proposed development having regard to: • proposed number of students and staff? • assumed travel mode share for the school developed having regard to: • existing mode share • proposed measures to reduce car-based travel			TTW to advise Needs further detail and assessment

	and/or census data?				
	• expected distribution across the local road network?	\boxtimes			
•	outline future surrounding roads/road infrastructure shown on a relevant Indicative Layout Plan/Masterplan				
	and how the development responds to these?				
•	include a SIDRA analysis (or other modelling agreed		\boxtimes		SIDRA modelling not completed
	through the TWG) of key nearby intersections before the				for nearby intersections
	proposed development (i.e. existing) and after the				immediately after the activity is
	development at completion and 10 years after?	_	[constructed
•	include the detailed SIDRA modelling results?		\boxtimes		Outstanding
•	include a conclusion that the SIDRA analysis (or	\boxtimes			
	alternative) demonstrates that the local road network can				
	accommodate the additional traffic generated by the development?				
•	if there is a reduction in Level of Service (LoS) from pre		\boxtimes		Outstanding – pre-development
•	to post development, does the TIA justify that this is				LoS not provided
	acceptable or set out measures to mitigate the impact /				
	accommodate the additional demand?				
•	identify how significant infrastructure gaps will be				TTW to advise
	addressed?				
•	include an existing conditions road safety assessment if				TTW to advise
	existing road safety issues were identified?				
•	identify how any known safety issues will be addressed?				TTW to advise
Sc	nool Transport Plan	\boxtimes			
	s a School Transport Plan been included in the TAIA				
whi	ch:				
•	sets out measures to reduce car-based travel?				
•	sets achievable targets for mode shift with supporting	\boxtimes			
	explanation and evidence?	_	[_	
•	include provisions for the monitoring and review of the plan?	\boxtimes			
-	arational Darking				
	erational Parking	\boxtimes			
	es the TAIA clearly set out:	\boxtimes			
	es the TAIA clearly set out: proposed car parking?				
Do	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking?	\boxtimes			
•	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities?	\boxtimes			
• • • •	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for	\boxtimes			
Do • • Do par	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share?				
 Do Do par If s 	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand?				
 Doo Doo Doo par If it 	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include				No evidence that surrounding
 Doc Doc par If it infc 	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include prmation to demonstrate why this is acceptable? i.e.				No evidence that surrounding streets have spare capacity
Doo • • Doo par If s If it info ava	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. ilability of on street parking in surrounding streets based				
 Dou Dou par If s If it info ava on 	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include prmation to demonstrate why this is acceptable? i.e. illability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity?				
Doo • • Doo par If s If it infc ava on Doo	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle				
Doo Doo par If s If it info ava on Doo par	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include prmation to demonstrate why this is acceptable? i.e. illability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity?				
Doo Doo par If s If it info ava on Doo par Pri	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king?				
Doo Doo par If s If it info ava on Doo par Pri	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up				
Doo o par If s If it info ava on Doo par Pri Doo	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements?				
Doo o par If s If it info ava on Doo par Pri Doo	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up				
Dou Dou par If s If it infc ava on Dou par Pri Dou	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share,				
Dou Participarity of the second seco	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time?				
Dou Dou par If s If it infc ava on Dou par Pri Dou	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private				
Dou Participarity of the second seco	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the				
Dou Participarity If s If it infc ava on Dou participarity Pri Dou •	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the above demand?				streets have spare capacity
Dou Dou par If s If it infc ava on Dou par Pri Dou ava on Pri Bu	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the				
Dou Dou par If s If it infc ava on Dou par Pri Dou ava on Pri Bu	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. illability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the above demand? s drop-off and pick-up				streets have spare capacity
Dou Dou par If s If it infc ava on Dou par Pri Dou Bu Dou	es the TAIA clearly set out: proposed car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. ilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the above demand? s drop-off and pick-up es the TAIA:				streets have spare capacity
Dou Dou par If s If it infc ava on Dou par Pri Dou Bu Dou	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick- up arrangements? identify the expected private vehicle drop-off / pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the above demand? s drop-off and pick-up es the TAIA: describe the proposed bus drop-off / pick-up arrangements? identify the expected bus drop-off / pick-up				streets have spare capacity
Dou Dou par If si If it infc ava on Dou par Pri Dou • • • • • • • • • • • • •	es the TAIA clearly set out: proposed car parking? proposed bicycle car parking? proposed end-of trip facilities? es the TAIA include an assessment of likely demand for king having regard to the expected/target mode share? o, does the proposal meet the expected demand? doesn't match expected demand, does it include ormation to demonstrate why this is acceptable? i.e. iilability of on street parking in surrounding streets based a parking demand survey to demonstrate spare capacity? es the TAIA include a similar assessment of bicycle king? vate vehicle drop-off and pick-up es the TAIA: describe the proposed private vehicle drop-off and pick-up demand based on the expected/target mode share, number of trips / drop-offs and likely dwell time? assess the capacity of the existing / proposed private vehicle drop-off / pick-up areas to accommodate the above demand? s drop-off and pick-up es the TAIA: describe the proposed bus drop-off / pick-up arrangements?				streets have spare capacity

•	assess the capacity of the existing / proposed bus drop-	\boxtimes		
	off / pick-up to accommodate the above demand?			
	vice and emergency vehicle access es the TAIA:	\boxtimes		
•	set out the proposed access arrangements for service vehicles (i.e. garbage and other deliveries) and emergency vehicles?			
٠	set out any required mitigation or management measures?			
•	assess the above arrangements and conclude that they would not have significant impacts?	\boxtimes		
	erall assessment			
Do •	es the TAIA: include a list of measures to mitigate the impacts of the			
•	activity? conclude overall, that the activity would not be likely to			
NIa	have significant environment impacts?			
	ise and vibration		 	
Do Ass	ise monitoring es the REF include an Noise and Vibration Impact sessment (NVIA)?			
at l	es the assessment include background noise monitoring ocations that appropriately represent the existing noise els at nearby sensitive receivers (i.e. residences,	\boxtimes		
chu	rches, health facilities, etc.)?			
req	es the background noise monitoring undertaken meet the uirements of Noise Policy for Industry (2017) i.e. at least a ek with acceptable weather conditions:	\boxtimes		
•	average wind speed <5 m/s? no rain or other extraneous noise?			
	nstruction noise	\boxtimes		
noi	es the assessment consider impacts from construction se and vibration in accordance with the Interim nstruction Noise Guideline?			
	es it:	\square		
•	determine noise management levels for the development?			
•	predict noise levels of the proposed construction activities (usually of expected standard activities and equipment and associated noise levels given that full construction methodology will not yet be known)?			
•	conclude whether the predicted levels would exceed the noise management levels?	\boxtimes		
•	set out measures to minimise impacts to sensitive receivers, including existing school users, and ensure best practice on site?	\boxtimes		
•	conclude whether construction noise would be likely to result in significant impacts?	\boxtimes		
•	adopt standard construction hours set out in the ICNG or include justification where non-standard hours are proposed?	\boxtimes		
Do	ration es the assessment include an assessment of potential pacts as a result of vibration during constriction which: relevant standards and assessment criteria for human comfort, sensitive equipment and structural damage?			
•	details potential sources of vibration during construction having regard to typical activities and equipment expected to undertake proposed construction works?	\boxtimes		
•	consider potential impacts having regard to separation distances to nearby sensitive receivers?	\boxtimes		
•	sets out measures to mitigate potential impacts,	\boxtimes		

 \odot \odot

New Melrose Park High School | REF Review Checklist | [Insert date] | 6 / 17

	including existing school users?	1			
•	concludes that the proposed activity would not be likely to have significant environmental affects following mitigation?				
Οp	erational noise				
	es the assessment:				
•	consider noise impacts from all aspects of proposed				
	operations in accordance with the Noise Policy for				
	Industry (2017) or Association of Australasian Acoustical				
	Consultants Guideline for Child Care Centre Acoustic				
	Assessment in the case of outdoor play?				
•	determine noise criteria that would be applicable?				
•	consider all proposed activities, including:	\boxtimes			Delineation between Stage 1
	 indoor learning activities? 				and Stage 2 required
	 outdoor play? 	\boxtimes			Delineation between Stage 1
					and Stage 2 required
	 use of public address system? 	\boxtimes			Delineation between Stage 1
					and Stage 2 required
	 plant and equipment (i.e. air conditioning) 	\boxtimes			Delineation between Stage 1
					and Stage 2 required
	 use of the hall 	\boxtimes			Delineation between Stage 1
					and Stage 2 required
	 use of outdoor sports courts 	\square			Delineation between Stage 1
					and Stage 2 required
•	conclude that the proposal would meet the project noise				
	trigger levels?			_	
•	set out mitigation measures if the proposal does not				
Int	meet the trigger levels, does the assessment		_		
	ernal noise tenability	\boxtimes			
	es the assessment:				
•	consider external sources of noise in proximity to the site				
-	(i.e. main roads or rail corridors)?				Arup to clearly locate in report
•	detail applicable internal noise comfort criteria having regard to the EFSG?				and advise
•	predict internal noise levels?				
•	conclude that internal noise levels would meet criteria?				
•	set out any proposed mitigation measures required to meet the criteria?	\boxtimes			
•	erall assessment				
	es the assessment:				
00					
•	include a list of measures to mitigate the impacts of the				
•	activity? conclude overall, that the activity would not be likely to				
•	result in significant environmental affects?				
Do	es the REF list any mitigation measures identified in the				
	sessment and incorporate them into the design where				
	blicable (i.e. does the design include mechanical				
	itilation where this is required to achieve internal comfort				
	els)?				
	odiversity				
	es the REF include either:				
	a statement from a suitably qualified ecologist that the				
	proposed activity will not be carried out in a declared				
	area of outstanding biodiversity value and is not likely to				
	significantly affect threatened species, populations or				
	ecological communities, or their habitats or impact				
	biodiversity values, meaning a Species Impact				
	Statement and/or Biodiversity Development Assessment				
	Report is not required having regard to <u>\$7.8</u> of the				
	Biodiversity Conservation Act 2016 (this might include a				
	statement that accompanies a Biodiversity Development				
	Assessment Report (BDAR) waiver issue ahead of a				

previously proposed SSD application); or			
 a SIS; and/or a BDAR? 			
A statement that the proposed activity is not likely to have a significant impact on matters of national environmental significance, or on the environment of Commonwealth land,			
and therefore referral to the Minister under the EPBC Act is not required? Note: Contact the Statutory Planning team if impacts are likely.			
If the development is on biodiversity certified land, does the REF include information to identify the site (using associated		\boxtimes	
mapping) and demonstrate the proposed development is consistent with the relevant biodiversity measure conferred by the biodiversity certification?			
Does the REF list any mitigation measures identified in the assessment and incorporate them into the design where			
applicable? Flooding			
•			
Flood Hazard Does the REF include either:			
 information that demonstrates that the site and key access routes are free of flood risk; or 			
 a Flood Risk and Impact Assessment (FIRA)? 			
If a FIRA has been prepared, does it:			
• state that it has been prepared in accordance with the			
updated Floodplain Management Manual and Toolkit,			
including Planning Circular PD24-001?			
 detail consultation undertaken with the local council and any relevant agencies (i.e. State Emergency Service) to 			
any relevant agencies (i.e. State Emergency Service) to			
identify existing, draft and proposed flood studies relevant to the site?			
 describe the flood potential of the site and key access routes having regard to available flood studies and 			
information, the conditions of the site, and the types of			
flood:			
flood: o mainstream flooding?			
flood: o mainstream flooding? o overland flows?			
flood: o mainstream flooding? o overland flows? o flash flooding?			
flood: o mainstream flooding? o overland flows? o flash flooding? • describe the key flood mechanisms?			
flood: o mainstream flooding? o overland flows? o flash flooding? e describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 10yr? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 0.2% AEP / 1 in 500yr? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 10yr? 0.2% AEP / 1 in 500yr? 0.02% AEP / 1 in 5000yr? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 5000yr? PMF? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? PMF? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? 0.2% AEP / 1 in 5000yr? PMF? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? PMF? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood frequency and levels? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood frequency and levels? Risk / impact of flood on the activity 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood frequency and levels? Risk / impact of flood on the activity If a FIRA has been prepared, does it: determine whether the proposal is in a high-risk 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 20yr? 0.2% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood frequency and levels? Risk / impact of flood on the activity If a FIRA has been prepared, does it: determine whether the proposal is in a high-risk catchment? 			
 flood: mainstream flooding? overland flows? flash flooding? describe the key flood mechanisms? include flood modelling showing flood extent, levels, depths, velocities and hazard classifications for all relevant events, including: 1% AEP / 1 in 100yr? 5% AEP / 1 in 20yr? 10% AEP / 1 in 500yr? 0.2% AEP / 1 in 500yr? 0.02% AEP / 1 in 500yr? PMF? consider the timeframe for flood waters to inundate the site and timeframe for water to hit peak levels? consider the impacts of climate change on future flood frequency and levels? Risk / impact of flood on the activity If a FIRA has been prepared, does it: determine whether the proposal is in a high-risk catchment? the location of the proposal in relation to flood behaviour and constraints including floodway, flood storage area or 			

New Melrose Park High School | REF Review Checklist | [Insert date] | 8 / 17

•	whether the proposal provides for safe occupation and		
•	efficient and effective evacuation in flood events and how		
	it is to be achieved?		
•	in high-risk catchments, whether the proposal is likely to		
	result in a significant increase to the risk to life in other		
-	parts of the catchment in a PMF flood event?	 	
•	any known evacuation constraints such as the flood		
	emergency response classification for the area and available warning times (including rate of rise and when		
	the evacuation route is cut off by floodwater)?		
•	whether the proposal is for a sensitive or hazardous land		
	use, or other higher risk uses and what mitigation		
	strategies (if any) are proposed to reduce any identified		
	risks?		
	bact of the activity on flood outside of the site		
	FIRA has been prepared, does it address the matters to sider set out in PS-24-001, including has it determined:		
COI	potential impacts of cut and fill and other building works		
•	on flood behaviour?		
•	whether there may be adverse flooding impacts on		
	surrounding properties?		
•	ability of proposed development to withstand flood		
D	impacts?		
	Iding and structure design FIRA has been prepared, does it:		
• •	nominate a flood planning level (minimum floor level plus		
-	freeboard) for proposed buildings?		
•	recommend any other mitigations such as flood resistant		
	materials or structural requirements?		
FE			
	e site or key access routes are impacted by flood waters,		
	es the REF include a preliminary Flood Emergency sponse Plan (FERP) that has been prepared in		
	sultation with NSW SES?		
	es the plan clearly and simply detail:		
•	the flood potential of the site?		
٠	detail roles and responsibilities across the department		
	and relevant emergency response agencies?	 	
•	flood monitoring and warning systems consistent with advice received to date from NSW SES?		
•	flood warning times and notifications?		
•	emergency management triggers, including rainfall and		
•	water levels?		
•	the emergency response to a flood event or events		
	where different flood mechanisms impact a site?		
•	messaging and communication protocols?		
•	assembly points and flood free routes (where required)?		
•	shelter in place locations (where required as last resort)		
	that are able to withstand flood and debris forces of the PMF?		
•	mechanisms and requirements for regular review?		
•	awareness training for employees, contractors, visitors,		
	students and caregivers and induction of new staff		
	members?		
	nclusion		
Doe	es the FIRA:		
•	conclude that the proposal would not be likely to result in		
	significant environmental effects?		
•	list any mitigation measures identified in the assessment?		
Do	es the REF list any mitigation measures identified in the		
	essment and incorporate them into the design where		

 \odot \odot

New Melrose Park High School | REF Review Checklist | [Insert date] | 9 / 17

applicable (i.e. flood resistant structures and materials)?			
Bushfire			
Does the REF include either:		\square	
 information that demonstrates that the site is not mapped 			
as bushfire prone and is not adjacent to a potential			
bushfire hazard; or			
a Bushfire Assessment (BA)?		 	
If a BA has been prepared, does it:		\boxtimes	
 assess the immediately adjoining bushfire hazard in accordance with Planning for Bush Fire Protection 			
(PBP)?			
consider bushfire in the wider landscape context and		\boxtimes	
potential impacts to key access routes or surrounding			
communities that may impact the activity?			
identify bushfire protection measures required under		\boxtimes	
PBP?			
 confirm if the activity can comply with the required bushfire protection measures, including: 		\boxtimes	
 provision of minimum asset protection zones (APZs) 			
with all buildings outside of the APZs?			
 minimum construction requirements for buildings? 		\boxtimes	
Note: - Table 2, Appendix B of the Addendum November 2022 to PBP			
requires school buildings on bushfire prone land to be built to a			
minimum of BAL-19 The NSW RFS has advised that BAL-Low does not apply to school			
and similar developments under PBP. If the consultant considers			
that no construction standard applies, the report should state 'no requirements' in order to avoid further information requests from the			
NSW RFS.			
 access roads? 		\boxtimes	
 provision of a perimeter road between the buildings 		\boxtimes	
 and the bush fire hazard? water provision? 			
water provision? design of utilities?		\boxtimes	
 emergency management arrangements? 			
 Iandscaping? 			
Conclusion			
Does the BA:			
• conclude that the proposal would not be likely to result in			
significant environmental effects?			
 list any mitigation measures identified in the 		\boxtimes	
assessment?			
Does the REF list any mitigation measures identified in the assessment and incorporate them into the design where		\boxtimes	
applicable (i.e. APZs, BAL-19 construction?			
Contamination			
Have either of the following been prepared to inform the			
REF:			
a Preliminary Site Investigation (PSI) and/or Detailed			
Site Investigation (DSI) that conclude that there is a low			
risk of contamination and that the site is suitable for the use of the site as a school; or			
 a PSI and/or DSI and a Remediation Action Plan (RAP)? 			
Does the PSI, DSI and RAP address all the potential sources	\boxtimes		
of contamination mentioned in the various report?			
If the DSI or RAP identifies that limited further testing is	\boxtimes		
required, has this been incorporated as a mitigation measure			
in the REF? If remediation is required, does the REF determine if the			
remediation is Category 1 or 2 having regarded to the		\boxtimes	
Hazards and Resilience SEPP?			
Does the REF include an interim statement from a Site		\boxtimes	

New Melrose Park High School | REF Review Checklist | [Insert date] | 10 / 17

Auc	litor confirming that the RAP is appropriate?		1		
	p interim statement, does the RAP set out actions to			\boxtimes	
	ediate all potential sources of contamination?				
	es the REF summarise investigations undertaken and	\boxtimes			
	clude that contamination risk has been appropriately				
	ressed in accordance with the Hazards and Resilience				
SE					
Has	the PSI, DSI and/or RAP concluded that the proposal	\boxtimes			
	Ild not be likely to result in significant environmental		_		
	cts as a result of contamination and/or contamination				
mai	nagement?				
Doe	es the REF list any mitigation measures identified in the	\boxtimes			
	essment and incorporate them into the design where				
app	licable?				
En	vironmental heritage				
Her	itage items			\boxtimes	
lf:	-				
•	any portion of the site is a listed heritage item on the				
	department's s170 register, in the Local Environmental				
	Plan (LEP) or on the State Heritage Register (SHR); or				
•	there is a place listed on any s170 register, LEP or SHR				
	immediately near the site; or				
•	the school site in a heritage conservation area; or				
٠	the site has been previously assessed as having				
	heritage significance even if no statutory listing has been				
	provided;				
	a heritage impact statement (HIS) been prepared to				
	port the REF?	_			
	HIS has been prepared, does the HIS:			\boxtimes	
•	provide a clear assessment of heritage significance				
	against the NSW guidelines for Assessing Heritage				
	Significance? include an assessment of the degree of impact (physical			\boxtimes	
•	and visual) to identified heritage items?				
•	assess the impacts of the proposal to be less then			\boxtimes	
•	minimal?				
•	detail consultation with council if the impacts were			\boxtimes	
	assessed as more than minimal?				
•	identify whether additional Heritage Act approvals (s60			\boxtimes	
	permits) are required if the item is on the SHR?				
•	include adequate project justification and analysis of			\boxtimes	
	design options to show that the heritage impacts were				
	not avoidable (if the impacts were assessed as more				
	than minimal)?				
•	set out appropriate mitigation measures?			\boxtimes	
Arc	haeology			\boxtimes	
Doe	es the REF and/or HIS:				
٠	consider the potential for archaeological relics either in a				
	HIS or through existing regional planning documentation				
	or similar?				
•	include an evidence-based archaeological assessment,				
	including a clear grading of the potential for				
	archaeological remains to be identified, and what their				
14 -	archaeological significance is?				
it ai	n archaeological assessment was undertaken has:			\boxtimes	
•	the assessment been informed by historic archaeological				
•	test excavation (where necessary)?				
•	the assessment identified impacts to archaeological relics?			\boxtimes	
-	archaeological monitoring or test excavation been			\boxtimes	
•	proposed under a self-approved s139(4) Exception, and				
	if so, has an Exception Record of Use Form been				

New Melrose Park High School | REF Review Checklist | [Insert date] | 11 / 17

submitted and signed?	1				
 is a permit under the Heritage Act (s140 / s60), approve by Heritage NSW, required to authorise impacts to relics? 	ed 🗆				
 set out appropriate mitigation measures required to give effect to any mitigations from the archaeological 	e 🗆				
assessment?					
Aboriginal cultural heritage					
Does the REF either include:	\boxtimes				
confirmation that the activity does not include ground					
disturbing works or removal of mature vegetation; or					
 an Aboriginal Cultural Heritage Due Diligence (DD), a Preliminary Indigenous Heritage Assessment Impact 					
(PIHAI) and/or an Archaeological Survey Report (ASR)					
which identifies no harm to Aboriginal objects or places					
would occur; or					
 an Aboriginal Cultural Heritage Assessment Report (ACHAR)? 					
Note: where a DD / PIHAI / ASR has been prepared and it identifie	es				
that Aboriginal objects or places are likely to be impacted, an ACHAR must be prepared.					
Where an ASR has been prepared, has it assessed the			\boxtimes		
archaeological nature and significance of Aboriginal sites within the study area (through survey / test excavation)?					
Where an ACHAR has been prepared, has it been					
undertaken in accordance with the OEH consultation					
guidelines?					
Where an ACHAR has been prepared, has it completed the					
mandatory steps, including:					
 agencies contacted to identify relevant parties; an advert placed in local paper to invite registrations of 					
interest;					
 invitations to register issued to potential stakeholder 					
groups;					
• methodology issued to RAPs and invited to comment;					
and					
draft ACHAR sent to RAPs and invited to comment? Where an ACHAR has been prepared:					
 have all comments provided by RAPs been addressed 					
and actioned (where possible) in the ACHAR?					
did the ASR or ACHAR assess the archaeological natu					
and significance of Aboriginal sites within the study area	a				
(through survey / test excavation)?assess impacts of the proposed works?					
 assess impacts of the proposed works? indicate that an Aboriginal Heritage Impact Permit (AHI) 					
is required?	, ,				
Has the REF and/or supporting documents:					
 included a list of measures to mitigate the impacts of th 	е				
activity?					
 concluded that the proposal would not be likely to result in significant environmental effects? 	t 🛛 🗆				
Built form and urban design					
If the project has a value over \$50M, has it been presented				NBRS/COLLIERS TO	
at School Design Review Panel (SDRP)?				CONFIRM	
If presented to SDRP, have comments from the Panel been	:			NBRS/COLLIERS TO	
 summarised in the REF / Design Report? 				CONFIRM	
appropriately considered, incorporated into the design				NBRS/COLLIERS TO	
(where appropriate) and responded to in the REF /				CONFIRM	
Architectural Design Report? Does the Design Report:					
 explain how the proposed layout, building and facade 					
design appropriately considers and respond to the					
V Department of Education Jan-25					() ()

existing / likely future / pr streetscape?	eferred character of the			
	ty principles in the T&I SEPP set out in the Design Guide for			OUTSTANDING
	the proposed development is ion of the site context and form ent?			
Environmental amenity				
Overshadowing				
Does the REF:				
 include shadow diagrams 		\square		
 discuss impacts from over 				REF
 conclude that the propos impacts? 	al would have no significant			REF
private open space of res REF demonstrate mainte daylight as required by the	overshadowing of windows or sidential properties, does the enance of at least two hours of ne Apartment Design Guide or with the applicable Planning			
Privacy				
Does the REF consider poter proposed works and conclud to result in significant effects measures?	e that these would not be likely			
Visual impacts				
Does the REF assess potent proposed works and conclud significant with or without mit	e that impacts would not be gation measures?			
views from private property, o	I to obstruct existing significant does the REF include an n accordance with the Tenacity sment of the: views are obtained;			
	oposal causing the impact?			
Does the assessment conclu would not be likely to result in	de overall, that the proposal			
effects? Visual impacts (view sharir	a) – public views		\boxtimes	
 views from public land, does in accordance with the established by the Rose Bay Marina Pty Limited and anor [2013] NSWLEC 10 the impact on the public dom an assessment of: nature and scope of domain; locations in the publi interrupted view is en o extent of the obstructor intensity of public us 	the existing views from public c domain from which potentially njoyed tion at each relevant location; e of those locations where that scured, in whole or in part, by			
 whether there is any 	, document that identifies the ew to be assessed; and			
	tive evaluation of the impacts?			

New Melrose Park High School | REF Review Checklist | [Insert date] | 13 / 17

Does the REF list any mitigation measures identified in the above assessments and incorporate them into the design where applicable?			\boxtimes	
Air quality				
If the site is adjacent to a significant potential source of air pollution (i.e. motorway, airport or hazardous industry), has the REF been informed by either of the following by a suitably qualified person: • a statement that air quality at the site is suitable for the				
proposed use based on expert advice and/or existing data;an air quality assessment?				
Note: Reference may need to be given to <u>Development Near Rail Corridors</u> and <u>Busy Roads – Interim Guideline</u> in the above				
 If an air quality assessment is prepared, does it: conclude that air quality is suitable for the proposed use with or without migration? 				
 indicate impacts generated by the proposed activity and suitable mitigation measures? 			\boxtimes	
Does the REF summarise the assessment and list any mitigation measures identified in the above assessments and			\boxtimes	
incorporate them into the design where applicable?				
Trees and landscaping				
Has an Aboricultural Impact Assessment (AIA) been prepared to support the REF which assesses existing trees within the proposed works area, including street trees, and recommends tree protection measures for trees to be retained?				
Does the REF discuss the number, species, pot sizes and height of trees to be removed and trees to be planted?			\boxtimes	
Have any tree protection measures set out in the AIA been	\boxtimes			
incorporated in:the design;				
 REF mitigation measures; and 				
the preliminary construction methodology?				
Social Impact				
Does the REF include an assessment of the social impacts of				
the proposed activity comprising either:Sites identified for a school in a Voluntary Planning				
Agreement (VPA), Concept Approval, Precinct Plan,				
Indicative Layout Plan, adopted Masterplan, or other				
adopted strategic planning document, together with upgrades to existing schools - <u>Social impact addressed</u>				
in REF by the consultant town planner (i.e. no				
standalone SIA report).				
 New schools where land has not been identified as a school in a strategic planning document or VPA etc - 				
Social impact addressed in the REF by consultant town				
planner (or suitably experienced), or as necessary, in a				
stand-alone report.				
 Schools subject to closures or mergers, or where there is loss of, or substantial change to, community 				
infrastructure: Comprehensive SIA as a separate report				
prepared by suitably experienced consultant.				
Ecologically sustainable development				
Does the ESD Report set sustainability targets for the activity		\boxtimes		Operational energy an potable
 in line with the department's commitments, including: Green Star Buildings certification for projects with 				water intensity targets outstanding
 Green Star Buildings certification for projects with >1000m2 new building and >\$10m EDC of 5 Star for Sydney, Wollongong and Newcastle metro or 4 Star for rest of NSW 				outstanding
Operational energy and potable water intensity targets				

 \odot \odot

New Melrose Park High School | REF Review Checklist | [Insert date] | 14 / 17

for the activity?		
If Green Star Buildings certification is required, does the ESD		
Report include:		
 the Green Star registration number for the project, and 		
 a Green Star Building pathway showing how activity will 		
achieve the required number of credit points to certify?		
If applicable under the Sustainable Buildings SEPP, has an		
NABERS embodied emissions material form been included in		
the ESD Report?		
Does the ESD report include a Climate Change Risk		
Assessment and Adaptation Plan?		
For sites identified as any high or extreme risks in the		
Climate Change Risk Assessment and Adaptation Plan, have		
design responses been identified to been incorporated into		
the project to mitigate the risks?		
Does the ESD Report adequately address how the activity		
will:		
 minimise waste from associated demolition and 		
construction;		
 minimise peak electricity demand; 		
 minimise overall energy use through passive design; 		
 generate and store renewable energy; 		
 minimise consumption of potable water; and 		
 meter and monitor energy and water consumption and 		
 meter and monitor energy and water consumption and energy generation? 		
Does the ESD Report include a Net Zero Action Plan / Net		
Zero in operations plan (exact name TBA) that adequately		
addresses how the activity has been designed to eliminate		
use of fossil fuels during operations, or how the use of fossil		
fuels will be minimised and will be eliminated by 2035?		
Staging		
5120100		
If the project is to be staged, does the REF include		More info required – separate
If the project is to be staged, does the REF include preliminary details on how construction and operations will		More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including		
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage:		
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction?		
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers?		EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking		EU email to Colliers More info required – separate
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements?		EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking		EU email to Colliers More info required – separate EU email to Colliers More info required – separate
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision?		EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and		EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers More info required – separate
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction?		EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students		EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers More info required – separate EU email to Colliers More info required – separate
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff?		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic 		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and 		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant 		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? 		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a 		EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging?		EU email to Colliers More info required – separate EU email to Colliers
 If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: operational areas and areas still under construction? student/staff numbers? operational and construction access and parking arrangements? open space provision? measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a 		EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging?		EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities		EU email to Colliers More info required – separate EU email to Colliers
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities?		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities?		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities?		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose Park HS Services Report (REF),
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities?		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities? Does the REF assess any works required to provide necessary services and utilities and conclude that these would not have significant environmental affects? If on site water treatment is required, does the REF include		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose Park HS Services Report (REF),
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities? Does the REF assess any works required to provide necessary services and utilities and conclude that these would not have significant environmental affects? If on site water treatment is required, does the REF include an on-side waste water management plan / land capability		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose Park HS Services Report (REF),
If the project is to be staged, does the REF include preliminary details on how construction and operations will be managed during each stage of the development, including the following for each stage: • operational areas and areas still under construction? • student/staff numbers? • operational and construction access and parking arrangements? • open space provision? • measures to ensure acceptable amenity for students and staff in areas adjacent to ongoing construction? • measures to ensure the safety and security of students and staff? Has each relevant technical report (transport and acoustic reports at a minimum) assessed the proposed staging and concluded that it would not be likely to result in significant environmental affects, including cumulative affects? Does the REF list any mitigation measures identified as a result of the proposed staging? Utilities Does the REF broadly set out how the proposal will be serviced by necessary services and utilities? Does the REF assess any works required to provide necessary services and utilities and conclude that these would not have significant environmental affects? If on site water treatment is required, does the REF include		EU email to Colliers More info required – separate EU email to Colliers EL-MPHS-RPT-002 Melrose Park HS Services Report (REF), Section 5.1 and 5.2 EL-MPHS-RPT-002 Melrose Park HS Services Report (REF),

 \odot \odot

environment?				
If temporary arrangements are required (i.e. generator), does			\boxtimes	
the REF assess any potential temporary environmental				
effects as a result of the arrangements and conclude that				
significant effects would not be likely?				
Stormwater drainage				
Has a stormwater management plan been prepared that:				
considers and complies with council's applicable				
engineering specifications, including requirement for on-				
site detention and water quality treatment?				
demonstrates that the proposed stormwater				
management system would not increase runoff from the				
site (i.e. that post-development flows do not exceed pre-				
development flows)?				
demonstrates that the stormwater management system				
would discharge to a legal point of discharge?				
conclude that stormwater would be managed so that the	\boxtimes			
proposal would not be likely to have significant				
environmental affects?				
Does the REF summarise the proposed stormwater management strategy and conclude that the activity would				
not be likely to have significant environmental impacts as a				
result of stormwater management with or without mitigation				
measures?				
Soil and water				
If the site is mapped as, or has otherwise been identified, as		\boxtimes		
having salinity potential, does the geotechnical report				
consider impacts from salinity and set out measures to				
mitigate impacts (i.e. Salinity Management Plan) so that they				
would not be significant?				
If the site is mapped as, or has otherwise been identified as		\boxtimes		
having acid sulfate soils (ASS) potential, does the				
geotechnical report consider impacts from ASS and set out				
measures to mitigate impacts (i.e. ASS Management Plan)				
so that they would not be significant?				
If the site is mapped as being in an area of groundwater vulnerability, does the REF include an Integrated Water			\boxtimes	
Management Plan that assess the potential of the activity to				
impact groundwater and does it conclude that the activity				
would not be likely to have significant environmental impacts				
with or without mitigation measures?				
If the site is mapped as being in an area of landslide risk,		\boxtimes		
does the REF assess the potential of the activity and does it				
conclude that the activity would not be likely to have				
significant environmental impacts with or without mitigation				
measures? Has an Erosion and Sediment Control plan been prepared to				
inform the REF that includes:		\boxtimes		
a plan(s) detailing:				
 property boundaries, existing levels of the land in 				
relation to the building, roads and where stormwater				
surface flows enter and leave the site?				
• the location of stabilised construction access points?				
• the location of perimeter sediment/erosion controls?				
 any 'no-go' areas that are not to be disturbed? 				
 location of stockpile areas? 				
 location of proposed temporary and permanent site 				
drainage?				
 specific measures to be implemented to prevent pollution 				
of stormwater off the site? Does the REF summarise the proposed controls and				
incorporate any mitigation measures identified in the above				

 \odot \bigcirc

New Melrose Park High School | REF Review Checklist | [Insert date] | 16 / 17 $\,$

documents?			
Waste management			
 Has a preliminary Construction Waste Management Plan been prepared that informs the REF that considers: the likely type and volume of waste generated by the activity? 			
 opportunities to reuse and recycle waste in order to reduce waste sent to landfill? 			
• set out measures to handle and dispose of the waste?	\boxtimes		
 conclude that appropriate arrangements can be put in place such that there would not be likely to have significant environmental affects? 		\boxtimes	NEEDS CONCLUSION
 Has a preliminary Operational Waste Management Plan been prepared to inform the REF that considers: the likely type and volume of waste generated by the activity? 			
 opportunities to reuse and recycle waste in order to reduce waste sent to landfill? 			
 set out measures to handle and dispose of the waste including the number of bins, siting and size of the waste storage area, and truck access arrangements (including swept path diagrams to demonstrate access can be achieved in a forward direction)? 			REQUIRES: truck access arrangements (including swept path diagrams to demonstrate access can be achieved in a forward direction)
Council's waste management policies, if applicable?	\boxtimes		
 conclude that appropriate arrangements can be put in place such that there would not be likely to have significant environmental affects? 			NEEDS CONCLUSION
Does the REF summarise outcomes of the above and incorporate any mitigation measures identified in the above documents?			
Aviation			
If the proposal is located within the Obstacle Limitation Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF?			
Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement:			
Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF?			
Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: • describe the nearby aviation facility? • any relevant policies, procedures or controls that apply			
Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: • describe the nearby aviation facility? • any relevant policies, procedures or controls that apply to development works on the site? • assess any potential impacts from the activity, including			
 Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: describe the nearby aviation facility? any relevant policies, procedures or controls that apply to development works on the site? assess any potential impacts from the activity, including proposed buildings, on aviation operations? assess any potential impacts of the proposed construction activities, including use of cranes, on aviation operations? describe any consultant with the relevant airport, CASA or other relevant aviation authority? 			
 Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: describe the nearby aviation facility? any relevant policies, procedures or controls that apply to development works on the site? assess any potential impacts from the activity, including proposed buildings, on aviation operations? assess any potential impacts of the proposed construction activities, including use of cranes, on aviation operations? describe any consultant with the relevant airport, CASA 			
 Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: describe the nearby aviation facility? any relevant policies, procedures or controls that apply to development works on the site? assess any potential impacts from the activity, including proposed buildings, on aviation operations? assess any potential impacts of the proposed construction activities, including use of cranes, on aviation operations? describe any consultant with the relevant airport, CASA or other relevant aviation authority? advise if any approvals are required under aviation legislation? conclude that the proposal is appropriate and would not have detrimental impacts on aviation safety or operations? 			
 Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: describe the nearby aviation facility? any relevant policies, procedures or controls that apply to development works on the site? assess any potential impacts from the activity, including proposed buildings, on aviation operations? assess any potential impacts of the proposed construction activities, including use of cranes, on aviation operations? describe any consultant with the relevant airport, CASA or other relevant aviation authority? advise if any approvals are required under aviation legislation? conclude that the proposal is appropriate and would not have detrimental impacts on aviation safety or operations? Does the REF summarise outcomes of the above and incorporate any mitigation measures identified in the above documents?			
 Surface (OLS) or is in close proximity to an aviation facility, including helicopter landing sites, has a statement from a suitably qualified person assessing the proposed activity been prepared to inform the REF? Does the statement: describe the nearby aviation facility? any relevant policies, procedures or controls that apply to development works on the site? assess any potential impacts from the activity, including proposed buildings, on aviation operations? assess any potential impacts of the proposed construction activities, including use of cranes, on aviation operations? describe any consultant with the relevant airport, CASA or other relevant aviation authority? advise if any approvals are required under aviation legislation? conclude that the proposal is appropriate and would not have detrimental impacts on aviation safety or operations? 			

 \odot \odot

New Melrose Park High School | REF Review Checklist | [Insert date] | 17 / 17

location, type, content and appearance of any proposed signs that form part of the REF activity?		
Other		
If the site is located in a coastal management or sensitivity area, does the REF include a Coastal Management Assessment that assesses the likely impacts of the activity on coastal values and concludes that these would not be likely to be significant with or without mitigation?		
If the site is in proximity to a gas or oil pipeline, petrol station, LPG storage, landfill or other hazardous use, does the REF include a Preliminary Hazard Assessment that assesses the risk to the proposed activity and concludes that the risk is acceptable according to any relevant assessment framework?		
If the site is in a Mine Subsidence District or Mine Subsidence Risk Area, does it include a Mine Subsidence Statement and Advisory Board Approval or Mine Subsidence Risk Report (as appropriate?		
If the site is in close proximity to high volage power lines or telecommunication towers, does the REF include an Electromagnetic Field Report that assesses the risk to the proposed activity and concludes that the risk is acceptable according to any relevant assessment framework?		
If the site is located in an area of risk of unexploded ordinance, does the REF include an Unexploded Ordinance Risk Assessment that assesses the risk to the proposed activity and concludes that the risk is acceptable according to any relevant assessment framework?		
If the proposed activity includes a proposed government preschool, does the REF include a report that details how the proposed activity complies with Part 4 of the Child Care Planning Guideline September 2021?		

Completion

	Name and position	Signature	Date
Prepared:	[Name]		[Insert date]
	Project Town Planning		
	Consultant		
Reviewed:	[Name]		
	Project Manager		

APPENDIX B

ENGINEERING BOREHOLE LOGS

.

BOREHOLE LOG

BH ID: BH1

Locat Clien		Corner Wharf Road ar NSW Dept of Educatio						Started02 December 2024Completed02 December 2024				
Jop N	lo.	20468/4					х <i>У</i>	Logged By	y JF		Date	02 December 2024
Shee		1 of 1						Review B	y J⊦	ł	Date	02 December 2024
		ntractor Terratest					Surface RL ≈16.26 m (AHD)	Latitude	-			
Plant	: ۲	Comacchio		ck mo	ounted	l Geo	305 Inclination 90°	Longitude		1		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	& O	ERIAL ORIGIN BSERVATIONS
		BH1_0.00-0.15 PID = 0.0 PPM		0.00_ 0.15-		-16.26 -16.10	FILL: Gravelly CLAY: low plasticity, grey SHALE: brown-grey, highly weathered, low to medium	strength	M	-	FILL BEDROCK	
AD/T		BH1_0.20-0.30 BH1_0.20-0.40 BH1_0.20-0.40 PID = 0.0 PPM BH1_0.80-1.00 BH1_1.00-1.32 SPT 1.00-1.32 20,10,8/20 mm HB N=R PID = 0.0 PPM		0.40			SHALE: moderately weathered, medium strength	strength			BEDROCK	
				3- 			Terminated at 2.64m. Auger refusal on bedrock.					

GEOTECHNIQUE [®]	_

BOREHOLE LOG

BH ID: BH2

Loca Clien		Corner Wharf Road ar NSW Dept of Educatio						Started Complete			ember 2024 ember 2024
Job I		20468/4						Logged B	y Jł	H	Date 03 December 2024
Shee		1 of 1					6 (6) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	Review B	y J⊦	1	Date 03 December 2024
Plan	-	ontractor Terratest Comacchio	h tra	-k ma	untod	Goo	Surface RL ≈16.00 m (AHD) 305 Inclination 90°	Latitude Longitude	- •		
Pidii	L L	Contacchic			Junteu	Geo		Longitud		22	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		PID = 0.0 PPM		0.00_		_	FILL: Gravelly CLAY: low plasticity, brown-grey		D - M		FILL
ADIT	GR	BH2_0.00-0.15 PID = 0.0 PPM BH2_0.35-0.45 PID = 0.0 PPM BH2_1.50-1.95 SPT 1.50-1.95 10,12,18 N=30	SA	0.00 ⁻ - - - - - - - - - - - - - - - - - -			FILL: Gravelly CLAY: low plasticity, brown-grey SHALE: brown-grey, highly to moderately weathered, with clay lenses SHALE: grey, moderately weathered, low to medium s Terminated at 2.95m. Auger refusal on bedrock.	Ī		00	FILL WEATHERED ROCK BEDROCK
				6							

_

BOREHOLE LOG

BH ID: BH3

Locat Clien Job N												03 December 2024
Shee		1 of 1						Review B			Date	03 December 2024
Drilli	ng Co	ntractor Terratest					Surface RL ≈15.48 m (AHD)	Latitude	-			
Plant		Comacchio		ck mo	unted	Geo	305 Inclination 90°	Longitude	e -		1	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	& OI	ERIAL ORIGIN 3SERVATIONS
		BH3_0.00-0.15 BH3_0.10-0.30		0.00_		-	Silty CLAY: medium to high plasticity, brown mottled gr shale fragments	ey with			RESIDUAL SO	DIL
AD/T		PID = 0.0 PPM BH3_0.35-0.45 PID = 0.0 PPM BH3_0.70-0.74		0.30		-15.18 	SHALE: grey, highly to moderately weathered, low to m strength	nedium			BEDROCK	
		ВП 0.70-0.74 RW/40 mm, 10/40 mm HB N=R					Terminated at 0.80m. Auger refusal on bedrock.					

.

BOREHOLE LOG

BH ID: BH4

Clier	t	Corner Wharf Road ar NSW Dept of Educatio					ure (SINSW)	Started02 December 2024Completed02 December 2024				
Job I Shee		20468/4 1 of 1						Logged By Review By			Date Date	02 December 2024 02 December 2024
		ontractor Terratest						Latitude	-		2000	
Plan		Comacchic	o trac	ck mc	unted	Geo	305 Inclination 90°	Longitude	. -			
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	& OI	ERIAL ORIGIN 3SERVATIONS
		BH4_0.00-0.15 PID = 0.0 PPM		0.00_ 0.15-		16.04 15.89	FILL: Gravelly CLAY: low plasticity, grey SHALE: brown-grey, highly to moderately weathered, lo	w to	M	-	FILL BEDROCK	
AD/T		BH4_0.20-0.30 BH4_0.20-0.40 BH4_0.20-0.40 PID = 0.0 PPM BH4_1.20-1.30				 	medium strength					
		BH4_1.20-1.40 PID = 0.0 PPM BH4_1.50-1.63 SPT 1.50-1.63 18/130 mm HB N=R				- 	Terminated at 1.63m. SPT refusal on bedrock.					

_

BOREHOLE LOG

BH ID: BH5

Clien Job N Shee	t Io. ts	Corner Wharf Road ar NSW Dept of Educatio 20468/4 1 of 1 ntractor Terratest						Starte Comp Logge Review	leted d By w By		ecember 20 ecember 20 Dat Dat	24 e 03 December 2024
Plant	:	Comacchic	o trac	ck mo	unted	Geo	305 Inclination 90°	Longit	ude	-		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY / REL. DENSITY) 5 1	DCP BLOWS 0 15 20 25 3	
AD/T		BH5_0.00-0.15 BH5_0.00-0.18 PID = 0.0 PPM BH5_0.20-0.40 BH5_0.20-0.80 BH5_0.50-0.85 SPT 0.50-0.85		0.00			Silty CLAY: medium to high plasticity, brown mottled grey	M ≈ PL - M < PL	F - St	4 7 5 4 3 3 3 3 3 8/5	0mm	RESIDUAL SOIL
		<u>SPT 0.50-0.85</u> 3.4.12/50 mm HB N=R		0.80 			SHALE: grey, highly to moderately weathered, low to medium strength, with ironstone Terminated at 0.85m. SPT, Auger & DCP Refusal on bedrock.					BEDROCK

APPENDIX C

PID CALIBRATION SHEETS

PID CALIBRATION

.

•••

CLIENT PROJECT ADDRESS PID MODE SERIAL NO	SINSM Propose Corner L EL PID MODI O SERIAL N) School /herf P.J d EL: PGM - 10: 110 - 0	Itope Street,) 7600 MINIRAE 05380	JOB NO J 0468/5 DATE 2717/24 Nelrose R. CHECKED BY JH 2000 CALIBRATED BY JH	
This perforr	nance of this P	ID has been	checked and ca	librated as follows:	
\boxtimes	Charged*				
	Calibrate	0.0ppm		Reading: <u></u> ppm	
		100ppm	lsobutylene	Reading: (00 ppm	
(Gas Bottle Nu	mber 173	Lot No	51809	
				i č	
Signed & Ap	oproved	2		Date: 2/12/24	
ote: * Shou	Id be between	5.V and 6.2V			

PID CALIBRATION

CLIENT PROJECT ADDRESS PID MODEI SERIAL NO	SINSU Proposed Corner PID MODE SERIAL N	5.hool Whorf Rd EL: PGM- O: 110-0	& Hope St, M 7600 MINIRAE 005380	JOB NO DATE اوارونی اسل CHECKI 2000 CALIBR	20 468/5 3/12/24 TH ATED BY JH	
This perform	nance of this P	D has been	checked and ca	librated as follow	/s:	
	Charged*					
	Calibrate	0.0ppm		Readi	ng:ppm	
		100ppm	lsobutylene	Readi	ng: <u>100</u> ppm	
G	Gas Bottle Nu	nber 173	Lot No	51809		
				ŧ		
Signed & App		~		Date: 3	12/24	
	ld be between t	5 V and 6 2V			1161 24	

APPENDIX D

LABORATORY ANALYTICAL REPORTS & CERTIFICATE OF ANALYSIS

ANALYTICAL REPORT

ontact	John Xu	Manager	Shane McDermott
lient	Geotechnique	Laboratory	SGS Alexandria Environmental
ddress	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
ephone	02 4722 2700	Telephone	+61 2 8594 0400
acsimile	02 4722 6161	Facsimile	+61 2 8594 0499
nail	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
roject	20468/5 Melrose Park	SGS Reference	SE275273 R1
rder Number	20468/5	Date Received	4/12/2024
mples	16	Date Reported	13/12/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No. SE275273 R0 dated 11.12.2024 issued by SGS Environment, Health and Safety due to modifying the sampling date error on some of the samples.

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Kinty (

Ly Kim HA Organic Section Head

V

Shane MCDERMOTT Laboratory Manager

MN

Teresa NGUYEN Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 f +61 2 8594 0499 Australia Australia

www.sgs.com.au

Page 1 of 23

SE275273 R1

VOC's in Soil [AN433] Tested: 5/12/2024

			BH1	BH1	BH2	BH3	BH4
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.2-0.3	0.0-0.15	0.0-0.15	0.0-0.15
			2/12/2024	2/12/2024	2/12/2024	3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.004	SE275273.006	SE275273.008
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

			BH4	BH5	DDS1	TS1	TS2
			CLAY	CLAY	CLAY	SOIL	SOIL
			1.2-1.3	0.0-0.15			
			2/12/2024	3/12/2024	2/12/2024	2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.010	SE275273.011	SE275273.012	SE275273.015	SE275273.016
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	[86%]	[110%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	[86%]	[109%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	[88%]	[112%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	[89%]	[109%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]	[109%]
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	-	-
Total BTEX*	mg/kg	0.3	<0.3	<0.3	<0.3	-	-

SE275273 R1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 5/12/2024

			BH1	BH1	BH2	BH3	BH4
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15 2/12/2024	0.2-0.3 2/12/2024	0.0-0.15 2/12/2024	0.0-0.15 3/12/2024	0.0-0.15 2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.004	SE275273.006	SE275273.008
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH4	BH5	DDS1
			CLAY 1.2-1.3 2/12/2024	CLAY 0.0-0.15 3/12/2024	CLAY - 2/12/2024
PARAMETER	UOM	LOR	SE275273.010	SE275273.011	SE275273.012
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 5/12/2024

			BH1	BH1	BH2	BH3	BH4
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.2-0.3	0.0-0.15	0.0-0.15	0.0-0.15
			2/12/2024	2/12/2024	2/12/2024	3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.004	SE275273.006	SE275273.008
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH4	BH5	DDS1
			CLAY 1.2-1.3 2/12/2024	CLAY 0.0-0.15 3/12/2024	CLAY - 2/12/2024
PARAMETER	UOM	LOR	SE275273.010	SE275273.011	SE275273.012
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 5/12/2024

			BH1	BH1	BH2	BH3	BH4
			CLAY 0.0-0.15	CLAY 0.2-0.3	CLAY 0.0-0.15	CLAY 0.0-0.15	CLAY 0.0-0.15
			2/12/2024	2/12/2024	2/12/2024	3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.004	SE275273.006	SE275273.008
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j&k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (NEPM/WHO 16)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH4	BH5	DDS1
			CLAY	CLAY	CLAY
			1.2-1.3	0.0-0.15	-
			2/12/2024	3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.010	SE275273.011	SE275273.012
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j&k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.1	<0.1	<0.1	<0.1
Total PAH (NEPM/WHO 16)	mg/kg	0.1	<0.1	<0.1	<0.1

SE275273 R1

OC Pesticides in Soil [AN420] Tested: 5/12/2024

			BH1	BH2	BH3	BH4	BH5
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15
			2/12/2024	2/12/2024	3/12/2024	2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.004	SE275273.006	SE275273.008	SE275273.011
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlordane (alpha + gamma chlordane)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total OC Pesticides	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total OC VIC EPA IWRG621	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Other OCP VIC EPA IWRG621	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE275273 R1

OC Pesticides in Soil [AN420] Tested: 5/12/2024 (continued)

			DDS1
			CLAY
			- 2/12/2024
PARAMETER	UOM	LOR	SE275273.012
Alpha BHC	mg/kg	0.1	<0.1
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
Chlordane (alpha + gamma chlordane)	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.1	<0.1
Endrin	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.1	<0.1
p,p'-DDD	mg/kg	0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total OC Pesticides	mg/kg	0.1	<0.1
Total OC VIC EPA IWRG621	mg/kg	0.1	<0.1
Total Other OCP VIC EPA IWRG621	mg/kg	0.1	<0.1

OP Pesticides in Soil [AN420] Tested: 5/12/2024

			BH1	BH2	BH3	BH4	BH5
PARAMETER	UOM	LOR	CLAY 0.0-0.15 2/12/2024 SE275273.001	CLAY 0.0-0.15 2/12/2024 SE275273.004	CLAY 0.0-0.15 3/12/2024 SE275273.006	CLAY 0.0-0.15 2/12/2024 SE275273.008	CLAY 0.0-0.15 3/12/2024 SE275273.011
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			DDS1
			CLAY
			- 2/12/2024
PARAMETER	UOM	LOR	SE275273.012
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

SE275273 R1

PCBs in Soil [AN420] Tested: 5/12/2024

			BH1	BH2	BH3	BH4	BH5
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15
			2/12/2024	2/12/2024	3/12/2024	2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.004	SE275273.006	SE275273.008	SE275273.011
Arochlor 1016	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PCBs	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			DDS1
			CLAY
PARAMETER	UOM	LOR	- 2/12/2024 SE275273.012
Arochlor 1016	mg/kg	0.1	<0.1
Arochlor 1232	mg/kg	0.1	<0.1
Arochlor 1242	mg/kg	0.1	<0.1
Arochlor 1248	mg/kg	0.1	<0.1
Arochlor 1254	mg/kg	0.1	<0.1
Arochlor 1260	mg/kg	0.1	<0.1
Total PCBs	mg/kg	0.1	<0.1

SE275273 R1

pH in soil (1:5) [AN101] Tested: 9/12/2024

рН	pH Units	0.1	5.5	7.2	5.0	4.9	5.6
PARAMETER	UOM	LOR	SE275273.003	SE275273.004	SE275273.006	SE275273.007	SE275273.008
			2/12/2024	2/12/2024	3/12/2024	3/12/2024	2/12/2024
			1.0-1.1	0.0-0.15	0.0-0.15	0.35-0.45	0.0-0.15
			CLAY	CLAY	CLAY	CLAY	CLAY
			БПІ	БП2	БПЭ	впэ	БП4
			BH1	BH2	BH3	BH3	BH4

			BH4
			CLAY
			1.2-1.3
			2/12/2024
PARAMETER	UOM	LOR	SE275273.010
рН	pH Units	0.1	5.5

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 10/12/2024

			BH1	BH2	BH3	BH3	BH4
			CLAY	CLAY	CLAY	CLAY	CLAY
			1.0-1.1	0.0-0.15	0.0-0.15	0.35-0.45	0.0-0.15
			2/12/2024	2/12/2024	3/12/2024	3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.003	SE275273.004	SE275273.006	SE275273.007	SE275273.008
Exchangeable Calcium, Ca	cmol (+)/kg	0.01	0.27	25	0.97	0.84	2.1
Exchangeable Calcium Percentage*	%	0.1	10.9	88.9	25.6	22.2	42.3
Exchangeable Potassium, K	cmol (+)/kg	0.01	0.36	0.50	0.32	0.34	0.38
Exchangeable Potassium Percentage*	%	0.1	14.6	1.8	8.3	8.9	7.7
Exchangeable Magnesium, Mg	cmol (+)/kg	0.02	1.1	1.3	1.9	2.0	1.7
Exchangeable Magnesium Percentage*	%	0.1	45.1	4.6	50.9	53.2	34.1
Exchangeable Sodium, Na	cmol (+)/kg	0.01	0.72	1.3	0.58	0.59	0.79
Exchangeable Sodium Percentage*	%	0.1	29.3	4.7	15.2	15.7	15.9
Cation Exchange Capacity	cmol (+)/kg	0.02	2.5	28	3.8	3.8	5.0

PARAMETER	UOM	LOR	BH4 CLAY 1.2-1.3 2/12/2024 SE275273.010
Exchangeable Calcium, Ca	cmol (+)/kg	0.01	8.2
Exchangeable Calcium Percentage*	%	0.1	78.0
Exchangeable Potassium, K	cmol (+)/kg	0.01	0.46
Exchangeable Potassium Percentage*	%	0.1	4.4
Exchangeable Magnesium, Mg	cmol (+)/kg	0.02	1.1
Exchangeable Magnesium Percentage*	%	0.1	10.1
Exchangeable Sodium, Na	cmol (+)/kg	0.01	0.79
Exchangeable Sodium Percentage*	%	0.1	7.5
Cation Exchange Capacity	cmol (+)/kg	0.02	11

SE275273 R1

Total Phenolics in Soil [AN295] Tested: 9/12/2024

			BH1	BH2	BH4	BH4	BH5
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.0-0.15	0.0-0.15	1.2-1.3	0.0-0.15
			2/12/2024	2/12/2024	2/12/2024	2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.004	SE275273.008	SE275273.010	SE275273.011
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			DDS1
			CLAY
			- 2/12/2024
PARAMETER	UOM	LOR	SE275273.012
Total Phenols	mg/kg	0.5	<0.5

SE275273 R1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 5/12/2024

			BH1	BH1	BH1	BH2	BH2
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.2-0.3	1.0-1.1	0.0-0.15	0.35-0.45
			2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.003	SE275273.004	SE275273.005
Arsenic, As	mg/kg	1	8	5	10	5	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	5.3	5.2	5.3	14	6.6
Copper, Cu	mg/kg	0.5	27	22	29	29	27
Lead, Pb	mg/kg	1	20	15	21	17	16
Nickel, Ni	mg/kg	0.5	7.6	4.7	7.8	16	6.0
Zinc, Zn	mg/kg	2	49	35	49	81	43

			BH3	BH3	BH4	BH4	BH4
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.35-0.45	0.0-0.15	0.2-0.3	1.2-1.3
			3/12/2024	3/12/2024	2/12/2024	2/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.006	SE275273.007	SE275273.008	SE275273.009	SE275273.010
Arsenic, As	mg/kg	1	7	4	5	5	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	6.2	4.1	5.8	4.9	6.6
Copper, Cu	mg/kg	0.5	6.5	5.7	22	18	26
Lead, Pb	mg/kg	1	12	12	15	13	15
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	17	3.0	6.0
Zinc, Zn	mg/kg	2	2	<2	63	25	43

			BH5	DDS1
PARAMETER	UOM	LOR	CLAY 0.0-0.15 3/12/2024 SE275273.011	CLAY - 2/12/2024 SE275273.012
Arsenic, As	mg/kg	1	5	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	5.2
Copper, Cu	mg/kg	0.5	5.1	27
Lead, Pb	mg/kg	1	15	19
Nickel, Ni	mg/kg	0.5	<0.5	7.6
Zinc, Zn	mg/kg	2	3	49

SE275273 R1

Mercury in Soil [AN312] Tested: 5/12/2024

			BH1	BH1	BH1	BH2	BH2
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.2-0.3	1.0-1.1	0.0-0.15	0.35-0.45
			2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.003	SE275273.004	SE275273.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH3	BH3	BH4	BH4	BH4
			CLAY 0.0-0.15	CLAY 0.35-0.45	CLAY 0.0-0.15	CLAY 0.2-0.3	CLAY 1.2-1.3
PARAMETER	UOM	LOR	3/12/2024 SE275273.006	3/12/2024 SE275273.007	2/12/2024 SE275273.008	0.2-0.3 2/12/2024 SE275273.009	2/12/2024 SE275273.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH5	DDS1
			CLAY	CLAY
			0.0-0.15	-
			3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.011	SE275273.012
Mercury	mg/kg	0.05	<0.05	<0.05

SE275273 R1

Moisture Content [AN002] Tested: 5/12/2024

			BH1	BH1	BH1	BH2	BH2
			CLAY	CLAY	CLAY	CLAY	CLAY
			0.0-0.15	0.2-0.3	1.0-1.1	0.0-0.15	0.35-0.45
			2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.001	SE275273.002	SE275273.003	SE275273.004	SE275273.005
% Moisture	%w/w	1	6.3	7.5	8.1	10.1	10.1

			BH3	ВНЗ	BH4	BH4	BH4
			CLAY 0.0-0.15 3/12/2024	CLAY 0.35-0.45 3/12/2024	CLAY 0.0-0.15 2/12/2024	CLAY 0.2-0.3 2/12/2024	CLAY 1.2-1.3 2/12/2024
PARAMETER	UOM	LOR	SE275273.006	SE275273.007	SE275273.008	SE275273.009	SE275273.010
% Moisture	%w/w	1	12.6	12.7	6.7	7.5	8.1

			BH5	DDS1
			CLAY	CLAY
			0.0-0.15	
			3/12/2024	2/12/2024
PARAMETER	UOM	LOR	SE275273.011	SE275273.012
% Moisture	%w/w	1	20.3	6.5

VOCs in Water [AN433] Tested: 9/12/2024

			RS1	RS2
			WATER	WATER
			- 2/12/2024	- 3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
Benzene	µg/L	0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 9/12/2024

			RS1	RS2
			WATER	WATER
			- 2/12/2024	- 3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
TRH C6-C9	µg/L	40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50

SE275273 R1

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested:

Tested: 6/12/2024

			RS1	RS2
			WATER	WATER
			- 2/12/2024	- 3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
TRH C10-C14	µg/L	50	<50	<50
TRH C15-C28	µg/L	200	<200	<200
TRH C29-C36	µg/L	200	<200	<200
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C40	µg/L	320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 6/12/2024

			RS1	RS2
			WATER	WATER
			2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
Naphthalene	µg/L	0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1
Fluorene	μg/L	0.1	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1	<0.1
Anthracene	μg/L	0.1	<0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1
Chrysene	μg/L	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 6/12/2024

			RS1	RS2
			WATER	WATER
			- 2/12/2024	- 3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
Arsenic, As	mg/L	0.02	<0.02	<0.02
Cadmium, Cd	mg/L	0.001	<0.001	<0.001
Chromium, Cr	mg/L	0.005	<0.005	<0.005
Copper, Cu	mg/L	0.005	0.007	0.008
Lead, Pb	mg/L	0.02	<0.02	<0.02
Nickel, Ni	mg/L	0.005	<0.005	<0.005
Zinc, Zn	mg/L	0.01	<0.01	<0.01

SE275273 R1

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 10/12/2024

			RS1	RS2
			WATER	WATER
			2/12/2024	3/12/2024
PARAMETER	UOM	LOR	SE275273.013	SE275273.014
Mercury	mg/L	0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN295	For Soil, a 1:10 NaOH extraction is made and analysed after 16 hours. The soil extract or water sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

METHOD SUMMARY

AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover the performance of this service.	- NVL	Not analysed. Not validated.	UOM LOR	Unit of Measure. Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	.8
Contact Client Address	John Xu Geotechnique P.O. Box 880 NSW 2751	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	20468/5 Melrose Park	SGS Reference	SE275273 R1
Order Number	20468/5	Date Received	04 Dec 2024
Samples	16	Date Reported	13 Dec 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	14 Soil/
Date documentation received	4/12/202
Samples received without headspace	Yes
Sample container provider	SGS
Samples received in correct containers	Yes

/Clay, 2 Wate)24 Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes 8.6°C Three Days/Standar Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Complete documentation received

SAMPLE SUMMARY

Sample cooling method

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-IENVIAN122 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analvsis Due BH1 SE275273.003 LB332665 02 Dec 2024 04 Dec 2024 30 Dec 2024 10 Dec 2024 30 Dec 2024 10 Dec 2024 BH2 SE275273.004 LB332665 02 Dec 2024 04 Dec 2024 30 Dec 2024 10 Dec 2024 30 Dec 2024 10 Dec 2024 внз SE275273.006 LB332665 03 Dec 2024 04 Dec 2024 31 Dec 2024 10 Dec 2024 31 Dec 2024 10 Dec 2024 RH3 SE275273.007 LB332665 03 Dec 2024 04 Dec 2024 31 Dec 2024 10 Dec 2024 31 Dec 2024 10 Dec 2024 BH4 SE275273.008 LB332665 02 Dec 2024 04 Dec 2024 30 Dec 2024 10 Dec 2024 30 Dec 2024 10 Dec 2024 BH4 SE275273.010 LB332665 02 Dec 2024 04 Dec 2024 30 Dec 2024 10 Dec 2024 30 Dec 2024 10 Dec 2024 Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312 Sample Name QC Ref Sampled Received Extraction Due Analysis Due Analysed Sample No. Extracted RS1 SE275273.013 LB332697 02 Dec 2024 04 Dec 2024 30 Dec 2024 10 Dec 2024 30 Dec 2024 11 Dec 2024 RS2 SE275273.014 LB332697 03 Dec 2024 04 Dec 2024 31 Dec 2024 10 Dec 2024 31 Dec 2024 11 Dec 2024 Mercury in Soil Method: ME-(AU)-[ENV]AN312 Sample Name Analvsis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted BH1 SE275273.001 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 11 Dec 2024 BH1 SE275273.002 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 BH1 SE275273.003 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 BH2 LB332342 SE275273.004 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 BH2 SE275273.005 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 BH3 SE275273.006 LB332342 03 Dec 2024 04 Dec 2024 31 Dec 2024 05 Dec 2024 31 Dec 2024 11 Dec 2024 внз SE275273.007 LB332342 03 Dec 2024 04 Dec 2024 31 Dec 2024 05 Dec 2024 31 Dec 2024 11 Dec 2024 BH4 SE275273.008 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 BH4 SE275273.009 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 BH4 30 Dec 2024 LB332342 02 Dec 2024 04 Dec 2024 05 Dec 2024 30 Dec 2024 SE275273.010 11 Dec 2024 BH5 SE275273 011 LB332342 03 Dec 2024 04 Dec 2024 31 Dec 2024 05 Dec 2024 31 Dec 2024 11 Dec 2024 DDS SE275273.012 LB332342 02 Dec 2024 04 Dec 2024 30 Dec 2024 05 Dec 2024 30 Dec 2024 11 Dec 2024 Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320 Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due RS1 SE275273.013 LB332399 02 Dec 2024 04 Dec 2024 31 May 2025 06 Dec 2024 31 May 2025 06 Dec 2024 06 Dec 2024 RS2 SE275273.014 LB332399 03 Dec 2024 04 Dec 2024 01 Jun 2025 01 Jun 2025 06 Dec 2024 Method: ME-(AU)-[ENV]AN002 Moisture Content Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1 SE275273.001 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH1 SE275273.002 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH1 SE275273.003 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH2 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 10 Dec 2024 SE275273.004 05 Dec 2024 09 Dec 2024 BH2 SE275273.005 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH3 SE275273.006 LB332352 03 Dec 2024 04 Dec 2024 17 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH3 SE275273.007 LB332352 03 Dec 2024 04 Dec 2024 17 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 04 Dec 2024 BH4 LB332352 SE275273.008 02 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH4 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 SE275273.009 BH4 SE275273 010 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 BH5 SE275273.011 LB332352 03 Dec 2024 04 Dec 2024 17 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 DDS1 SE275273.012 LB332352 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 10 Dec 2024 09 Dec 2024 OC Pesticides in Soil Method: ME-(AU)-IENVIAN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1 05 Dec 2024 SE275273.001 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 14 Jan 2025 09 Dec 2024 BH1 SE275273.002 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 11 Dec 2024 BH2 SE275273.004 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 09 Dec 2024 BH3 SE275273.006 04 Dec 2024 14 Jan 2025 LB332329 03 Dec 2024 17 Dec 2024 05 Dec 2024 09 Dec 2024 BH4 SE275273.008 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 09 Dec 2024 BH4 04 Dec 2024 SE275273.010 LB332329 02 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 11 Dec 2024 BH5 SE275273.011 LB332329 03 Dec 2024 04 Dec 2024 17 Dec 2024 05 Dec 2024 14 Jan 2025 09 Dec 2024 DDS1 SE275273.012 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 09 Dec 2024 **OP Pesticides in Sol** Method: ME-(AU)-[ENV]AN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed 09 Dec 2024 BH1 SE275273.001 14 Jan 2025 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 BH1 SE275273.002 LB332329 02 Dec 2024 04 Dec 2024 16 Dec 2024 05 Dec 2024 14 Jan 2025 11 Dec 2024

SE275273.004

LB332329

02 Dec 2024

04 Dec 2024

16 Dec 2024

05 Dec 2024

14 Jan 2025

BH2

09 Dec 2024

HOLDING TIME SUMMARY

SE275273 R1

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3	SE275273.006	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH4	SE275273.008	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH4	SE275273.010	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH5	SE275273.011	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
DDS1	SE275273.012	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
PAH (Polynuclear Aromatic								ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH1	SE275273.002	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH2	SE275273.004	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH3	SE275273.006	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH4	SE275273.008	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH4	SE275273.010	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
BH5	SE275273.011	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
DDS1	SE275273.012	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	09 Dec 2024
PAH (Polynuclear Aromatic	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RS1	SE275273.013	LB332358	02 Dec 2024	04 Dec 2024	09 Dec 2024	06 Dec 2024	15 Jan 2025	11 Dec 2024
RS2	SE275273.014	LB332358	03 Dec 2024	04 Dec 2024	10 Dec 2024	06 Dec 2024	15 Jan 2025	11 Dec 2024
PCBs in Soil							Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH1	SE275273.002	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH2	SE275273.004	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH3	SE275273.006	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH4	SE275273.008	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH4	SE275273.010	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
BH5	SE275273.011	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
DDS1	SE275273.012	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	11 Dec 2024
pH in soil (1:5)							Method:	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.003	LB332549	02 Dec 2024	04 Dec 2024	09 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
BH2	SE275273.004	LB332549	02 Dec 2024	04 Dec 2024	09 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
BH3	SE275273.006	LB332549	03 Dec 2024	04 Dec 2024	10 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
BH3	SE275273.007	LB332549	03 Dec 2024	04 Dec 2024	10 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
BH4	SE275273.008	LB332549	02 Dec 2024	04 Dec 2024	09 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
BH4	SE275273.010	LB332549	02 Dec 2024	04 Dec 2024	09 Dec 2024	09 Dec 2024	10 Dec 2024	09 Dec 2024
Total Phenolics in Soil							Method:	ME-(AU)-[ENV]AN295
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332584	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	09 Dec 2024
BH2	SE275273.004	LB332584	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	09 Dec 2024
BH4	SE275273.008	LB332584	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	09 Dec 2024
BH4	SE275273.010	LB332584	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	09 Dec 2024
BH5	SE275273.011	LB332584	03 Dec 2024	04 Dec 2024	17 Dec 2024	09 Dec 2024	17 Dec 2024	09 Dec 2024
DDS1	SE275273.012	LB332584	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	09 Dec 2024
Total Recoverable Element	ts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AL	J)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
BH1	SE275273.002	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
BH1	SE275273.003	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
BH2	SE275273.004	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
	SE275273.005	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
BH2								
BH2 BH3	SE275273.006	LB332339	03 Dec 2024	04 Dec 2024	01 Jun 2025	05 Dec 2024	01 Jun 2025	10 Dec 2024
		LB332339 LB332339	03 Dec 2024 03 Dec 2024	04 Dec 2024 04 Dec 2024	01 Jun 2025 01 Jun 2025	05 Dec 2024 05 Dec 2024	01 Jun 2025 01 Jun 2025	10 Dec 2024 10 Dec 2024
BH3	SE275273.006							
BH3 BH3	SE275273.006 SE275273.007	LB332339	03 Dec 2024	04 Dec 2024	01 Jun 2025	05 Dec 2024	01 Jun 2025	10 Dec 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

rotal Recoverable Elemen	ts in Soil/Waste Solids/Ma	terials by ICPOES (continued)				Method: ME-(AU)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5	SE275273.011	LB332339	03 Dec 2024	04 Dec 2024	01 Jun 2025	05 Dec 2024	01 Jun 2025	10 Dec 2024
DDS1	SE275273.012	LB332339	02 Dec 2024	04 Dec 2024	31 May 2025	05 Dec 2024	31 May 2025	10 Dec 2024
RH (Total Recoverable H	ydrocarbons) in Soll						Method:	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH1	SE275273.002	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH2	SE275273.004	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH3	SE275273.006	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH4	SE275273.008	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH4	SE275273.010	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
BH5	SE275273.011	LB332329	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
DDS1	SE275273.012	LB332329	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	14 Jan 2025	10 Dec 2024
RH (Total Recoverable H	ydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RS1	SE275273.013	LB332358	02 Dec 2024	04 Dec 2024	09 Dec 2024	06 Dec 2024	15 Jan 2025	11 Dec 2024
RS2	SE275273.014	LB332358	03 Dec 2024	04 Dec 2024	10 Dec 2024	06 Dec 2024	15 Jan 2025	11 Dec 2024
'OC's in Soil							Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
3H1	SE275273.002	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
3H2	SE275273.004	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH3	SE275273.006	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	09 Dec 2024
BH4	SE275273.008	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH4	SE275273.010	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH5	SE275273.011	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	09 Dec 2024
DDS1	SE275273.012	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
TS1	SE275273.015	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
TS2	SE275273.016	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	09 Dec 2024
OCs in Water							Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RS1	SE275273.013	LB332543	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	11 Dec 2024
RS2	SE275273.014	LB332543	03 Dec 2024	04 Dec 2024	17 Dec 2024	09 Dec 2024	17 Dec 2024	11 Dec 2024
olatile Petroleum Hydroca	arbons in Soil						Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE275273.001	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH1	SE275273.002	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
3H2	SE275273.004	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH3	SE275273.006	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	09 Dec 2024
BH4	SE275273.008	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH4	SE275273.010	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
BH5	SE275273.011	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	09 Dec 2024
DDS1	SE275273.012	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	09 Dec 2024
TS1	SE275273.015	LB332345	02 Dec 2024	04 Dec 2024	16 Dec 2024	05 Dec 2024	16 Dec 2024	10 Dec 2024
TS2	SE275273.016	LB332345	03 Dec 2024	04 Dec 2024	17 Dec 2024	05 Dec 2024	17 Dec 2024	10 Dec 2024
olatile Petroleum Hydroca	arbons in Water						Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RS1	SE275273.013	LB332543	02 Dec 2024	04 Dec 2024	16 Dec 2024	09 Dec 2024	16 Dec 2024	11 Dec 2024
RS2	SE275273.014	LB332543	03 Dec 2024	04 Dec 2024	17 Dec 2024	09 Dec 2024	17 Dec 2024	11 Dec 2024

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1	SE275273.001	%	60 - 130%	101
	BH2	SE275273.004	%	60 - 130%	102
	BH3	SE275273.006	%	60 - 130%	98
	BH4	SE275273.008	%	60 - 130%	104
	BH5	SE275273.011	%	60 - 130%	103
	DDS1	SE275273.012	%	60 - 130%	102
P Pesticides in Soil				Method: ME	-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH1	SE275273.001	%	60 - 130%	97
	BH2	SE275273.004	%	60 - 130%	96
	BH3	SE275273.006	%	60 - 130%	93
	BH4	SE275273.008	%	60 - 130%	98
	BH5	SE275273.011	%	60 - 130%	94
	DDS1	SE275273.012	%	60 - 130%	96
d14-p-terphenyl (Surrogate)	BH1	SE275273.001	%	60 - 130%	98
P P	BH2	SE275273.004	%	60 - 130%	99
	BH3	SE275273.006	%	60 - 130%	96
	BH4	SE275273.008	%	60 - 130%	101
	BH5	SE275273.011	%	60 - 130%	100
	DDS1	SE275273.012	%	60 - 130%	100
H (Polynuclear Aromatic Hydrocarbons) in Soil	2201	01210210.012	70		-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH1	SE275273.001	%	70 - 130%	97
z-nuoruurjunenyn (sunrugate)	BH1	SE275273.002	%	70 - 130%	98
	BH2	SE275273.004	%	70 - 130%	96
	BH3	SE275273.006	%	70 - 130%	93
	BH3	SE275273.008	%	70 - 130%	98
	BH4	SE275273.010	%	70 - 130%	100
	BH5	SE275273.010	%	70 - 130%	94
	DDS1	SE275273.011	%	70 - 130%	94
14.4 - tomberul (Currente)	BH1		%		
14-p-terphenyl (Surrogate)	BH1	SE275273.001	%	70 - 130%	98 99
		SE275273.002		70 - 130%	
	BH2	SE275273.004	%	70 - 130%	99
	BH3	SE275273.006	%	70 - 130%	96
	BH4	SE275273.008	%	70 - 130%	101
	BH4	SE275273.010	%	70 - 130%	102
	BH5	SE275273.011	%	70 - 130%	100
	DDS1	SE275273.012	%	70 - 130%	100
5-nitrobenzene (Surrogate)	BH1	SE275273.001	%	70 - 130%	92
	BH1	SE275273.002	%	70 - 130%	91
	BH2	SE275273.004	%	70 - 130%	91
	BH3	SE275273.006	%	70 - 130%	89
	BH4	SE275273.008	%	70 - 130%	93
	BH4	SE275273.010	%	70 - 130%	94
	BH5	SE275273.011	%	70 - 130%	91
	DDS1	SE275273.012	%	70 - 130%	90
AH (Polynuclear Aromatic Hydrocarbons) in Water					-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	RS1	SE275273.013	%	40 - 130%	90

oumple Nume	oampie number	Units	Onterna	itecovery /0
RS1	SE275273.013	%	40 - 130%	90
RS2	SE275273.014	%	40 - 130%	88
RS1	SE275273.013	%	40 - 130%	90
RS2	SE275273.014	%	40 - 130%	94
RS1	SE275273.013	%	40 - 130%	86
RS2	SE275273.014	%	40 - 130%	82
	RS1 RS2 RS1 RS2 RS1	RS1 SE275273.013 RS2 SE275273.014 RS1 SE275273.013 RS2 SE275273.013 RS2 SE275273.014 RS1 SE275273.014 RS1 SE275273.014	RS1 SE275273.013 % RS2 SE275273.014 % RS1 SE275273.013 % RS2 SE275273.013 % RS2 SE275273.014 % RS1 SE275273.013 % RS1 SE275273.013 %	RS1 SE275273.013 % 40 - 130% RS2 SE275273.014 % 40 - 130% RS1 SE275273.013 % 40 - 130% RS2 SE275273.013 % 40 - 130% RS2 SE275273.014 % 40 - 130% RS1 SE275273.014 % 40 - 130% RS1 SE275273.013 % 40 - 130%

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	BH1	SE275273.001	%	60 - 130%	101
	BH2	SE275273.004	%	60 - 130%	102
	BH3	SE275273.006	%	60 - 130%	98

PCBs in Soil

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	BH4	SE275273.008	%	60 - 130%	104
	BH5	SE275273.011	%	60 - 130%	103
	DDS1	SE275273.012	%	60 - 130%	102
'OC's in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ^o
Bromofluorobenzene (Surrogate)	BH1	SE275273.001	%	60 - 130%	103
	BH1	SE275273.002	%	60 - 130%	105
	BH2	SE275273.004	%	60 - 130%	102
	BH3	SE275273.006	%	60 - 130%	97
	BH4	SE275273.008	%	60 - 130%	97
	BH4	SE275273.010	%	60 - 130%	107
	BH5	SE275273.011	%	60 - 130%	86
	DDS1	SE275273.012	%	60 - 130%	98
d4-1,2-dichloroethane (Surrogate)	BH1	SE275273.001	%	60 - 130%	110
	BH1	SE275273.002	%	60 - 130%	113
	BH2	SE275273.004	%	60 - 130%	106
	BH3	SE275273.006	%	60 - 130%	104
	BH4	SE275273.008	%	60 - 130%	110
	BH4	SE275273.010	%	60 - 130%	110
	BH5	SE275273.011	%	60 - 130%	91
	DDS1	SE275273.012	%	60 - 130%	112
d8-toluene (Surrogate)	BH1	SE275273.001	%	60 - 130%	122
	BH1	SE275273.002	%	60 - 130%	125
	BH2	SE275273.004	%	60 - 130%	120
	BH3	SE275273.006	%	60 - 130%	117
	BH4	SE275273.008	%	60 - 130%	122
	BH4	SE275273.010	%	60 - 130%	130
	BH5	SE275273.011	%	60 - 130%	101
	DDS1	SE275273.012	%	60 - 130%	124
OCs in Water				Method: ME	-(AU)-[ENV]A
'arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	RS1	SE275273.013	%	40 - 130%	102
	RS2	SE275273.014	%	40 - 130%	103
d4-1,2-dichloroethane (Surrogate)	RS1	SE275273.013	%	40 - 130%	97
	RS2	SE275273.014	%	40 - 130%	97
d8-toluene (Surrogate)	RS1	SE275273.013	%	40 - 130%	87
	RS2	SE275273.014	%	40 - 130%	88
olatile Petroleum Hydrocarbons in Soll				Method: ME	-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH1	SE275273.001	%	60 - 130%	103
	BH1	SE275273.002	%	60 - 130%	105
	BH2	SE275273.004	%	60 - 130%	102
	BH3	SE275273.006	%	60 - 130%	97
	BH4	SE275273.008	%	60 - 130%	97
	BH4	SE275273.010	%	60 - 130%	107
	BH5	SE275273.011	%	60 - 130%	86
	DDS1	SE275273.012	%	60 - 130%	98
d4-1,2-dichloroethane (Surrogate)	BH1	SE275273.001	%	60 - 130%	110
	DEL	3E213213.001	/0	00 - 130 /0	

BH1

BH2

BH3

BH4

BH4

BH5

DDS1

BH1

BH1

BH2

BH3

SE275273.002

SE275273.004

SE275273.006

SE275273.008

SE275273.010

SE275273.011

SE275273.012

SE275273.001

SE275273.002

SE275273.004

SE275273.006

%

%

%

%

%

%

%

%

%

%

%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

d8-toluene (Surrogate)

113

106

104

110

110

91

112

122

125

120

117

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Parameter Sample Na Sample Numb Units Criteria Recovery % d8-toluene (Surrogate) BH4 SE275273.008 60 - 130% 122 % BH4 SE275273.010 % 60 - 130% 130 BH5 SE275273.011 % 60 - 130% 101 DDS1 60 - 130% 124 SE275273.012 % Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Water Criteria Recovery % Parameter Sample Nan Sample Numb Units Bromofluorobenzene (Surrogate) RS1 SE275273.013 40 - 130% 102 % RS2 SE275273.014 % 40 - 130% 103 d4-1,2-dichloroethane (Surrogate) RS1 SE275273.013 % 60 - 130% 97 SE275273.014 60 - 130% 97 RS2 % d8-toluene (Surrogate) RS1 SE275273.013 % 40 - 130% 87 RS2 SE275273.014 40 - 130% 88 %

METHOD BLANKS

SE275273 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water		Method: ME-(AU)	-[ENV]AN311(Perth)/AN312	
Sample Number	Parameter	Units	LOR	Result
LB332697.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil		N	fethod: ME-(AU)-[ENV]AN312	
Sample Number	Parameter	Units	LOR	Result
LB332342.001	Mercury	mg/kg	0.05	<0.05

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES			Meth	od: ME-(AU)-[ENV]AN320
Sample Number	Parameter	Units	LOR	Result
LB332399.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01
OC Pesticides in Soil			Meth	od: ME-(ALI)-IENVIAN420

C Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN
ample Number	Parameter	Units	LOR	Result
3332329.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Chlordane (alpha + gamma chlordane)	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.1	<0.1
	Endrin	mg/kg	0.1	<0.1
	Beta Endosulfan	mg/kg	0.1	<0.1
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	104
Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN

			Mour	od. mil-(//o)-[Littep/14420
Sample Number	Parameter	Units	LOR	Result
LB332329.001	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	99
	d14-p-terphenyl (Surrogate)	%	-	99

METHOD BLANKS

SE275273 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear Arc	omatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B332329.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(b&j&k)fluoranthene	mg/kg	0.2	<0.2
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Surrogates		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	96
		2-fluorobiphenyl (Surrogate)	%	-	99
		d14-p-terphenyl (Surrogate)	%	-	99
PAH (Polynuclear Arc	omatic Hydrocarbons) in Wate	d14-p-terphenyl (Surrogate)			- Meth

PAH (Polynuclear Aromatic Hydrocarbons) in Water

ample Number	Parameter	Units	LOR	Result
B332358.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	66
	2-fluorobiphenyl (Surrogate)	%	-	70
	d14-p-terphenyl (Surrogate)	%	-	82

PCBs in Soil			od: ME-(AU)-[ENV]AN420
Parameter	Units	LOR	Result
Arochlor 1016	mg/kg	0.1	<0.1
Arochlor 1232	mg/kg	0.1	<0.1
Arochlor 1242	mg/kg	0.1	<0.1
Arochlor 1248	mg/kg	0.1	<0.1
Arochlor 1254	mg/kg	0.1	<0.1
Arochlor 1260	mg/kg	0.1	<0.1
Total PCBs	mg/kg	0.1	<0.1
TCMX (Surrogate)	%	-	104
		Metho	od: ME-(AU)-[ENV]AN295
Parameter	Units	LOR	Result
Total Phenols	mg/kg	0.5	<0.5
	Arochlor 1016 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Total PCBs TCMX (Surrogate) Parameter	Arochlor 1016 mg/kg Arochlor 1232 mg/kg Arochlor 1232 mg/kg Arochlor 1242 mg/kg Arochlor 1248 mg/kg Arochlor 1254 mg/kg Arochlor 1260 mg/kg Total PCBs mg/kg TCMX (Surrogate) %	Parameter Units LOR Arochlor 1016 mg/kg 0.1 Arochlor 1232 mg/kg 0.1 Arochlor 1232 mg/kg 0.1 Arochlor 1242 mg/kg 0.1 Arochlor 1248 mg/kg 0.1 Arochlor 1254 mg/kg 0.1 Arochlor 1260 mg/kg 0.1 Total PCBs mg/kg 0.1 TCMX (Surrogate) % - Methor Parameter Units LOR

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES			Method: ME-(AU)-[ENV]AN040/AN320		
Sample Number	Parameter	Units	LOR		

METHOD BLANKS

SE275273 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	ments in Soil/Waste Solids/Mat				(AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
B332339.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2
RH (Total Recoverab	le Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B332329.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	le Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B332358.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
OC's in Soil					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
.B332345.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
.0002040.001	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	nyulotaibons	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.1
		o-xylene	mg/kg	0.1	<0.2
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)			116
	Sunogates	d8-toluene (Surrogate)	%		129
		Bromofluorobenzene (Surrogate)	%		106
	Totals	Total BTEX*	/% mg/kg	0.3	<0.3
OCs in Water	Totals		inging		od: ME-(AU)-[ENV]AN
		Parameter	Units	LOR	Result
Bample Number B332543.001	Menopuelie Aremotie				<0.5
_D332543.001	Monocyclic Aromatic	Benzene	μg/L	0.5	
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	o-xylene Naphthalene (VOC)*	μg/L	0.5	<0.5
			μg/L%	- 0.5	<0.5 96
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%		85
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)		-	
		Bromotiuorobenzene (Surrogate)	%	-	101
olatile Petroleum Hyd	arocardons in Soli				od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B332345.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	116
olatile Petroleum Hyd	drocarbons in Water				od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
		TRU 00.00		10	

Sample Number		Parameter	Units	LOR	Result
LB332543.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	101

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury in Soil Method: ME-(AU)-					ENVJAN312			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275273.010	LB332342.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE275299.006	LB332342.023	Mercury	mg/kg	0.05	0.33	0.38	44	14

Moisture Content

Moisture Content						Meth	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275273.010	LB332352.011	% Moisture	%w/w	1	8.1	7.9	42	2
SE275299.006	LB332352.020	% Moisture	%w/w	1	14.5	12.9	37	12

OC Pesticides in Soil

OC Pesticides in §	Soil						Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275299.002	LB332329.014		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlordane (alpha + gamma chlordane)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total OC Pesticides	mg/kg	0.1	<0.1	<0.1	200	0
			Total OC VIC EPA IWRG621	mg/kg	0.1	<0.1	<0.1	200	0
			Total Other OCP VIC EPA IWRG621	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.53	0.51	30	5
P Pesticides in S	Soil						Meth	od: ME-(AU)-	[ENV]AN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
E275299.002	LB332329.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorowrifee (Chlorowrifee Ethyl)	malka	0.2	<0.2	<0.2	200	0

LD332323.014		Azinphos-methyr (Outhon)	ilig/kg	0.2	~0.Z	~0.Z	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	3
natic Hydrocarbons	s) in Soll					Meth	od: ME-(AU)-	ENVJAN420
Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
LB332329.014		Naphthalene	mg/kg	0.1	0.1	0.2	87	65
		2-methylnaphthalene	mg/kg	0.1	0.1	0.2	86	41
		1-methylnaphthalene	mg/kg	0.1	0.1	0.2	97	37
	natic Hydrocarbons Duplicate	Surrogates natic Hydrocarbons) in Soll Duplicate	Bromophos Ethyl Bromophos Ethyl Chlorpyrifos (Chlorpyrifos Ethyl) Diazinon (Dimpylate) Dichlorvos Dimethoate Ethion Fenitrothion Malathion Methidathion Parathion-ethyl (Parathion) Total OP Pesticides* Surrogates 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) mattic Hydrocarbons) In Soil Duplicate Parameter LB332329.014 Naphthalene	Bromophos Ethyl mg/kg Bromophos Ethyl mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg Diazinon (Dimpylate) mg/kg Dichlorvos mg/kg Dichlorvos mg/kg Ethion mg/kg Fenitrothion mg/kg Malathion mg/kg Parathion-ethyl (Parathion) mg/kg Surrogates 2-fluorobiphenyl (Surrogate) mg/kg nattic Hydrocarbons) In Soil Naphthalene mg/kg LB332329.014 Naphthalene mg/kg	Bromophos Ethyl mg/kg 0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 Diazinon (Dimpylate) mg/kg 0.5 Dichlorvos mg/kg 0.5 Dimethoate mg/kg 0.2 Ethion mg/kg 0.5 Ethion mg/kg 0.2 Malathion mg/kg 0.2 Mathion mg/kg 0.2 Methidathion mg/kg 0.2 Parathion-ethyl (Parathion) mg/kg 0.2 Total OP Pesticides* mg/kg - Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - nettic Hydrocarbons) In Soll Diplicate Parameter Units LOR LB332329.014 Naphthalene mg/kg 0.1	Bromophos Ethyl mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2	Bromphos Ethyl mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Bromophos Ethyl mg/kg 0.2 <0.2 <0.2 200 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

	A official of Hydrobarb		uou)				Mour	iou. mil-(/10)-	feres has
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E275299.002	LB332329.014		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	0.3	0.4	59	17
			Fluorene	mg/kg	0.1	0.3	0.3	65	12
			Phenanthrene	mg/kg	0.1	0.9	1.2	40	36
			Anthracene	mg/kg	0.1	0.1	0.2	101	28
			Fluoranthene	mg/kg	0.1	1.1	1.4	38	17
			Pyrene	mg/kg	0.1	1.0	1.2	39	17
			Benzo(a)anthracene	mg/kg	0.1	0.5	0.5	49	1
			Chrysene	mg/kg	0.1	0.7	0.8	43	6
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	0.5	50	10
			Benzo(k)fluoranthene	mg/kg	0.1	0.5	0.4	51	21
			Benzo(b&j&k)fluoranthene	mg/kg	0.2	1.0	1.0	50	5
			Benzo(a)pyrene	mg/kg	0.1	0.5	0.5	50	7
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.4	0.3	57	12
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	144	0
			Benzo(ghi)perylene	mg/kg	0.1	0.4	0.3	60	14
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0.7</td><td>0.7</td><td>38</td><td>6</td></lor=0*<>	mg/kg	0.2	0.7	0.7	38	6
				TEQ (mg/kg)	0.2	0.7	0.7	38	6
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.8</td><td>0.7</td><td>37</td><td>6</td></lor=lor>	mg/kg	0.2	0.8	0.7	37	6
			-	TEQ (mg/kg)	0.2	0.8	0.7	37	6
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.8</td><td>0.8</td><td>47</td><td>5</td></lor=lor*<>	mg/kg	0.3	0.8	0.8	47	5
			-	TEQ (mg/kg)	0.3	0.8	0.8	47	5
			Total PAH (18)	mg/kg	0.1	7.6	8.7	31	13
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.47	0.42	30	12
		Ū.	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.49	0.47	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.50	0.49	30	3
CBs in Soil							Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD ^o
E275299.002	LB332329.014		Arochlor 1016	mg/kg	0.1	<0.1	<0.1	200	0
			Arochlor 1232	mg/kg	0.1	<0.1	<0.1	200	0
			Arochlor 1242	mg/kg	0.1	<0.1	<0.1	200	0
			Arochlor 1248	mg/kg	0.1	<0.1	<0.1	200	0
			Arochlor 1254	mg/kg	0.1	<0.1	<0.1	200	0
			Arochlor 1260	mg/kg	0.1	<0.1	<0.1	200	0
			Total PCBs	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0.53	0.51	30	5
H in soil (1:5)							Meth	od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE275273.010	LB332549.024		pH	pH Units	0.1	5.5	5.6	32	1
				· · ·					-

Total Phenolics in Soil

SE275331.010 LB332549.014

Total Phenolics in S	OII					Metho	а: ме-(AU)-[ENVJAN295
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE275273.012	LB332584.010	Total Phenols	mg/kg	0.5	<0.5	<0.5	200	0

pH Units

0.1

6.5

6.7

32

.

Method: ME-(AU)-IENVIAN040/AN320

3

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

pН

							6 1 1	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275273.010	LB332339.014	Arsenic, As	mg/kg	1	8	9	42	3
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	6.6	6.2	38	7
		Copper, Cu	mg/kg	0.5	26	22	32	15
		Nickel, Ni	mg/kg	0.5	6.0	5.1	39	17
		Lead, Pb	mg/kg	1	15	13	37	16
		Zinc, Zn	mg/kg	2	43	35	35	19
SE275299.006	LB332339.023	Arsenic, As	mg/kg	1	4	4	54	12
		Cadmium, Cd	mg/kg	0.3	0.7	0.8	70	6
		Chromium, Cr	mg/kg	0.5	46	43	31	7

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

					1.000			0.11	-
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE275299.006	LB332339.023		Copper, Cu	mg/kg	0.5	1700	1500	30	8
			Nickel, Ni	mg/kg	0.5	46	58	31	24
			Lead, Pb	mg/kg	1	69	65	31	6
			Zinc, Zn	mg/kg	2	2200	1900	30	12
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE275299.002	LB332329.014		TRH C10-C14	mg/kg	20	34	48	79	34
			TRH C15-C28	mg/kg	45	480	550	39	13
			TRH C29-C36	mg/kg	45	420	480	40	12
			TRH C37-C40	mg/kg	100	240	260	70	7
			TRH C10-C36 Total	mg/kg	110	940	1100	41	1:
			TRH >C10-C40 Total (F bands)	mg/kg	210	1200	1300	47	1
		TRH F Bands					88	63	32
		I KH F Danus	TRH >C10-C16	mg/kg	25	63			
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	63	88	63	32
			TRH >C16-C34 (F3)	mg/kg	90	790	880	41	1
			TRH >C34-C40 (F4)	mg/kg	120	330	360	65	8
SE275299.006	LB332329.019		TRH C10-C14	mg/kg	20	35	37	85	e
			TRH C15-C28	mg/kg	45	440	550	39	2
			TRH C29-C36	mg/kg	45	740	830	36	1
			TRH C37-C40	mg/kg	100	550	610	47	1(
			TRH C10-C36 Total	mg/kg	110	1200	1400	38	1
			TRH >C10-C40 Total (F bands)	mg/kg	210	1800	2000	41	1
		TRH F Bands	TRH >C10-C16	mg/kg	25	41	43	90	5
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	41	43	90	5
			TRH >C16-C34 (F3)	mg/kg	90	1000	1200	38	1
			TRH >C34-C40 (F4)	mg/kg	120	730	800	46	9
RH (Total Recov	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	
		, in traisi	Devenue (e.e.	11		Oniminal			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPL
									_
32273201.001	LB332358.028		TRH C10-C14	µg/L	50	200	190	56	
32273201.001	LB332358.028		TRH C15-C28	µg/L	200	890	890	52	(
52273201.001	LB332358.028		TRH C15-C28 TRH C29-C36	μg/L μg/L	200 200	890 660	890 660	52 60	C 1
31273201.001	LB332358.028		TRH C15-C28	μg/L μg/L μg/L	200	890	890	52 60 200	C 1
51275201.001	LB332358.028		TRH C15-C28 TRH C29-C36	μg/L μg/L	200 200	890 660	890 660	52 60	C 1 C
SE275261.001	LB332358.028	TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40	μg/L μg/L μg/L	200 200 200	890 660 <200	890 660 <200	52 60 200	9 0 1 0 1 6
51215201.001	LB332358.028	TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40	μg/L μg/L μg/L μg/L	200 200 200 320	890 660 <200 1900	890 660 <200 1900	52 60 200 47	0 1 0 1
GL275201.001	LB332358.028	TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16	µg/L µg/L µg/L µg/L µg/L	200 200 200 320 60	890 660 <200 1900 310	890 660 <200 1900 290	52 60 200 47 50	0 1 0 1 6
0.27.9201.001	LB332358.028	TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	µg/L µg/L µg/L µg/L µg/L µg/L	200 200 200 320 60 60	890 660 <200 1900 310 310	890 660 <200 1900 290 290	52 60 200 47 50 50	0 1 0 1 6 6 0
	LB332358.028	TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	200 200 200 320 60 60 500	890 660 <200 1900 310 310 1400	890 660 <200 1900 290 290 1400 <500	52 60 200 47 50 50 66 200	0 1 0 1 6 6 6 0 0 0 0 0
'OC's in Soil		TRH F Bands	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500	890 660 <200 1900 310 310 1400 <500	890 660 <200 1900 290 290 1400 <500 Meth	52 60 200 47 50 50 66 200 od: ME-(AU)-	0 1 0 1 6 6 0 0 0 0
' <mark>'OC's in Soll</mark> Original	Duplicate		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500	890 660 <200 1900 310 310 1400 <500	890 660 <200 1900 290 290 1400 <500 Metho Duplicate	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria %	0 1 0 6 6 0 0 0 0 0 0 7 [ENV]/
' <mark>'OC's in Soll</mark> Original		Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500 500	890 660 <200 1900 310 310 1400 <500 Original <0.1	890 660 <200 1900 290 290 1400 <500 Metho Duplicate <0.1	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200	0 1 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soll</mark> Original	Duplicate		TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500 500 0.1 0.1	890 660 <200 1900 310 310 310 1400 <500 Original <0.1 <0.1	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200	0 1 0 1 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soll</mark> Original	Duplicate	Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylibenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500 500 0.1 0.1	890 660 <200 1900 310 310 310 400 <500 Original <0.1 <0.1 <0.1	890 660 <200 1900 290 290 1400 <500 Metho Duplicate <0.1 <0.1	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 173	0 1 0 6 6 6 0 0 0 0 7 [ENV]/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>'OC's in Soll</mark> Original	Duplicate	Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 60 500 500 500 0.1 0.1 0.1 0.1 0.2	890 660 <200 1900 310 310 310 400 <500 Original <0.1 <0.1 <0.1 0.3	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.2	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119	0 1 0 1 6 6 6 0 0 0 0 7 (ENV)/ 4 (ENV)/ 0 0 0 0 0 0 0 0 2 0
' <mark>'OC's in Soll</mark> Original	Duplicate	Monocyclic Aromatic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 500 500 LOR 0.1 0.1 0.1 0.2 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 0.3 0.2	890 660 <200 1900 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.2 0.2	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78	(C) (C) (C) (C) (C) (C) (C) (C)
' <mark>'OC's in Soll</mark> Original	Duplicate	Monocyclic Aromatic Polycyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 500 500 LOR 0.1 0.1 0.1 0.2 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1	890 660 <200 1900 290 290 1400 <500 Meth 200 (0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200	C C C C C C C C C C C C C C C C C C C
' <mark>OC's in Soil</mark> Original	Duplicate	Monocyclic Aromatic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 500 500 LOR 0.1 0.1 0.1 0.2 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 0.3 0.2	890 660 <200 1900 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.2 0.2	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78	() () () () () () () () () () () () () (
<mark>OC's in Soil</mark> Driginal	Duplicate	Monocyclic Aromatic Polycyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	200 200 320 60 500 500 LOR 0.1 0.1 0.1 0.2 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1	890 660 <200 1900 290 290 1400 <500 Meth 200 (0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200	() () () () () () () () () () () () () (
<mark>OC's in Soil</mark> Driginal	Duplicate	Monocyclic Aromatic Polycyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 500 500 500 0.1 0.1 0.1 0.1 0.2 0.1 0.1 -	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 0.2 0.2 <0.1 9.2	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50	() () () () () () () () () () () () () (
<mark>OC's in Soll</mark> Driginal	Duplicate	Monocyclic Aromatic Polycyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 60 500 500 500 500 500 500 500 500	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9	890 660 <200 1900 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 <0.2 <0.1 9.2 9.8	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50	() () () () () () () () () () () () () (
<mark>OC's in Soll</mark> Driginal	Duplicate	Monocyclic Aromatic Polycyclic Surrogates	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16- Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 60 500 500 500 0.1 0.1 0.1 0.2 0.2 0.1 0.1 -	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9 9.0	890 660 <200 1900 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.2 <0.1 9.2 <0.1 9.8 8.7	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50	() () () () () () () () () () () () () (
OC's in Soil Driginal SE275299.001	Duplicate	Monocyclic Aromatic Polycyclic Surrogates	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16- Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX*	μg/L μg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.2 0.1 0.1 - - 0.3	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9 9.0 0.5	890 660 <200 1900 290 240 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.1 9.2 9.8 8.7 <0.3	52 60 200 47 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50 50 119	C C C C C C C C C C C C C C C C C C C
OC's in Soil Driginal SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes*	μg/L μg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9 9.0 0.5 0.5	890 660 <200 1900 290 240 500 Meth 0 0 0 1400 <500 Meth 0 0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 9.2 9.8 8.7 <0.3 0.4	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50 50 50 119 99	() () () () () () () () () () () () () (
' <mark>OC's in Soll</mark> Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16. TRH >C10-C40 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene	μg/L μg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9 9.0 0.5 0.5 <0.1	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.1 <0.2 <0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.4 <0.1	52 60 200 47 50 50 66 200 00: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50 50 50 119 99 200	() () () () () () () () () () () () () (
' <mark>'OC's in Soll</mark> Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene Ethylbenzene	μg/L μg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.2 <0.1 9.6 9.9 9.0 0.5 0.5 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.3 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.2 <0.3 <0.4 <0.1 <0.2 <0.1 <0.4 <0.1 <0.2 <0.1 <0.4 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	52 60 200 47 50 50 66 200 00: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50 50 50 119 99 200 200 200	() () () () () () () () () () () () () (
' <mark>'OC's in Soll</mark> Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C40 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1.2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Maphthalene (VOC)* d4-1.2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Brousel = Ethylbenzene Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene	μg/L μg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 0.3 0.2 <0.1 9.6 9.9 9.0 0.5 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.5 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.1 <0.5 <0.5 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.3 <0.4 <0.4 <0.4 <0.3 <0.4 <0.4 <0.4 <0.3 <0.4 <0.4 <0.4 <0.3 <0.4 <0.1 <0.4 <0.3 <0.4 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.4 <0.1 <0.4 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 50 50 50 50 50 119 99 200 200 200	C C C C C C C C C C C C C C C C C C C
'OC's in Soli Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH S2-C40 TRH >C10-C46 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/kg mg/kg	200 200 200 320 60 60 500 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 9.6 9.9 9.0 0.5 0.5 <0.5 <0.1 <0.1 <0.5 0.5 <0.1 <0.5 <0.5 <0.1 <0.5 <0.5 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.2 0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.1 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 173 119 78 200 50 50 50 50 50 50 50 50 200 200 200	C C C C C C C C C C C C C C C C C C C
'OC's in Soll Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C40 TRH >C10-C16 - Naphthalene (F2) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	μg/L μg/kg mg/kg mg/kg	200 200 320 60 60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1	890 660 <200	890 660 <200	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 200 173 119 78 200 50 50 50 50 50 50 50 50 50 50 200 20	0 1 0 6 6 0 0 0 -[ENV]A RPE 0 0 0 0 0
' <mark>OC's in Soll</mark> Original SE275299.001	Duplicate LB332345.023	Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH S2-C40 TRH >C10-C46 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/kg mg/kg	200 200 200 320 60 60 500 500 500 500 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1	890 660 <200 1900 310 310 400 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 9.6 9.9 9.0 0.5 0.5 <0.5 <0.1 <0.1 <0.5 0.5 <0.1 <0.5 <0.5 <0.1 <0.5 <0.5 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	890 660 <200 1900 290 290 1400 <500 Meth Duplicate <0.1 <0.1 <0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.2 0.2 0.2 <0.1 9.2 9.8 8.7 <0.3 0.4 <0.1 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <0.1 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.3 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	52 60 200 47 50 50 66 200 od: ME-(AU)- Criteria % 200 200 173 119 78 200 173 119 78 200 50 50 50 50 50 50 50 50 200 200 200	() () () () () () () () () () () () () (

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE275299.006	LB332345.021	Tatala	Total BTEX*		0.3	1.0	0.6	67	50 KPD 7
SE275299.000	LD332345.021	Totals	Total Xylenes*	mg/kg	0.3	1.0	0.6	67	50
			Total Aylenes	mg/kg	0.3	1.0			
OCs in Water								od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	
SE275247.002	LB332543.030	Monocyclic	Benzene	μg/L	0.5	<5	<5	200	0
		Aromatic	Toluene	µg/L	0.5	<5	<5	126	0
			Ethylbenzene	µg/L	0.5	<5	<5	200	0
			m/p-xylene	μg/L	1	<10	<10	189	0
			o-xylene	μg/L	0.5	<5	<5	167	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<5	<5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	8.3	30	16
			d8-toluene (Surrogate)	μg/L	-	8.4	9.1	30	7
			Bromofluorobenzene (Surrogate)	μg/L	-	10	9.0	30	11
		Totals	Total BTEX	μg/L	3	<30	<30	200	0
SE275273.014	LB332543.029	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	8.1	30	18
			d8-toluene (Surrogate)	μg/L	-	8.8	8.9	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	10.3	8.6	30	18
		Totals	Total BTEX	μg/L	3	<3	<3	200	0
olatile Petroleum	Hydrocarbons in Soi						Meth	od: ME-(AU)	-[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE275299.001	LB332345.023		TRH C6-C10	mg/kg	25	<25	<25	200	0
52276266.001	2002010.020		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		9.6	9.2	50	4
		Currogatoo	d8-toluene (Surrogate)	mg/kg		9.9	9.8	50	0
			Bromofluorobenzene (Surrogate)	mg/kg		9.0	8.7	50	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
		VIIII Banda	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE275299.006	LB332345.021		TRH C6-C10	mg/kg	25	<25	<25	200	0
52270200.000	2002040.021		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		11	11	50	3
		Sunogates	d8-toluene (Surrogate)	mg/kg		10	10	50	1
			Bromofluorobenzene (Surrogate)	mg/kg		10	8.9	50	13
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
		VIIII Banda	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
-leffle Defealering	I bedre ende en en te Mile	A		nightg	20	-20			
	Hydrocarbons in Wa	lter	-					od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE275247.002	LB332543.030		TRH C6-C10	μg/L	50	<500	<500	136	0
			TRH C6-C9	μg/L	40	<400	<400	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	8.3	30	16
			d8-toluene (Surrogate)	μg/L	-	8.4	9.1	30	7
			Bromofluorobenzene (Surrogate)	μg/L	-	10	9.0	30	11
			· · · · · · · · · · · · · · · · · · ·						
		VPH F Bands	Benzene (F0)	μg/L	0.5	<5	<5	200	
		VPH F Bands	· · · · · · · · · · · · · · · · · · ·	μg/L μg/L	0.5 50	<5 <500	<5 <500	200 136	
6E275273.014	LB332543.029	VPH F Bands	Benzene (F0)						0
SE275273.014	LB332543.029	VPH F Bands	Benzene (F0) TRH C6-C10 minus BTEX (F1)	µg/L	50	<500	<500	136	0
SE275273.014	LB332543.029	VPH F Bands	Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L μg/L	50 50	<500 <50	<500 <50	136 200	0 0 0
SE275273.014	LB332543.029		Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L	50 50 40	<500 <50 <40	<500 <50 <40	136 200 200	0 0 0 18
3E275273.014	LB332543.029		Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L	50 50 40 -	<500 <50 <40 9.7	<500 <50 <40 8.1	136 200 200 30	0 0 18 1
SE275273.014	LB332543.029		Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	50 50 40 - -	<500 <50 <40 9.7 8.8	<500 <50 <40 8.1 8.9	136 200 200 30 30	0 0 0 18

TRH C6-C10 minus BTEX (F1)

0

50

µg/L

<50

<50

200

Method: ME-(AU)-[ENV]AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332342.002	Mercury	mg/kg	0.05	0.22	0.2	80 - 120	111

Madela In Misters	(Discolution)	L. IODOF	0
Metals in Water	Dissolved		.S

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332399.002		Arsenic, As	mg/L	0.02	0.57	0.5	80 - 120	113
		Cadmium, Cd	mg/L	0.001	0.53	0.5	80 - 120	106
		Chromium, Cr	mg/L	0.005	0.52	0.5	80 - 120	105
		Copper, Cu	mg/L	0.005	0.54	0.5	80 - 120	107
		Lead, Pb	mg/L	0.02	0.52	0.5	80 - 120	105
		Nickel, Ni	mg/L	0.005	0.52	0.5	80 - 120	104
		Zinc, Zn	mg/L	0.01	0.55	0.5	80 - 120	111
C Pesticides in S	oil						Method: ME-(A	U)-IENVIAN42
Sample Number		Parameter	Units	LOR	Result	Expected	•	Recovery %
LB332329.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
2002020:002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	97
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	120
		Dieldrin	mg/kg	0.1	0.2	0.2	60 - 140	118
		Endrin	mg/kg	0.1	0.2	0.2	60 - 140	138
		p,p'-DDT		0.1	0.3	0.2	60 - 140	70
	Curre note o		mg/kg	-	0.55	0.2	40 - 130	109
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.55			
P Pesticides in S							Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332329.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	110
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	101
		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	98
		Ethion	mg/kg	0.2	2.0	2	60 - 140	102
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	104
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	101
PAH (Polynuclear /	Aromatic Hydroca	arbons) in Soil					Method: ME-(A	U)-[ENV]AN42
Sample Number	,	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332329.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	104
		Acenaphthylene	mg/kg	0.1	4.3	4	60 - 140	108
		Acenaphthene	mg/kg	0.1	4.3	4	60 - 140	106
		Phenanthrene	mg/kg	0.1	4.7	4	60 - 140	118
		Anthracene	mg/kg	0.1	4.5	4	60 - 140	112
		Fluoranthene	mg/kg	0.1	4.3	4	60 - 140	107
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	113
		Benzo(a)pyrene	mg/kg	0.1	5.3	4	60 - 140	132
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.50	0.5	70 - 130	99
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.52	0.5	70 - 130	104
		d14-p-terphenyl (Surrogate)	mg/kg	_	0.50	0.5	70 - 130	101
AH (Polynuclear)	Aromatic Hydroc:				0.00		Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332358.002		Naphthalene	μg/L	0.1	33	40	60 - 140	81
		Acenaphthylene	μg/L	0.1	37	40	60 - 140	91
		Acenaphthene	μg/L	0.1	38	40	60 - 140	95
		Phenanthrene	μg/L	0.1	42	40	60 - 140	104
		Anthracene	μg/L	0.1	42	40	60 - 140	104
		Fluoranthene		0.1	42	40	60 - 140	105
			µg/L					
		Pyrene	µg/L	0.1	41	40	60 - 140	103
		Benzo(a)pyrene	µg/L	0.1	44	40	60 - 140	109
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.5	40 - 130	76
			uo/I		0.4	0.5	40 120	00

µg/L

µg/L

Units LOR

0.4

0.5

0.5

0.5

40 - 130 96

40 - 130

```
PCBs in Soil
```

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Parameter

82

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (contin	ued)					N	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332329.002		Arochlor 1260	mg/kg	0.1	0.4	0.4	60 - 140	107
	Surrogates	TCMX (Surrogate)	mg/kg	-	0.55	0.5	40 - 130	109

pH in soil (1:5)					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332549.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100

Total Phenolics in Soil					N	Nethod: ME-(A	U)-[ENV]AN295
Sample Number	Parameter	Units	s LOR	Result	Expected	Criteria %	Recovery %
LB332584.002	Total Phenols	mg/kg	0.5	19	20	80 - 120	97

		Vaste Solids/Materials by ICPOES					ME-(AU)-[EN	-
Sample Number		Parameter	Units	LOR	Result	Expected		Recovery %
LB332339.002		Arsenic, As	mg/kg	1	340	318.22	80 - 120	106
		Cadmium, Cd	mg/kg	0.3	4.2	4.81	70 - 130	87
		Chromium, Cr	mg/kg	0.5	39	38.31	80 - 120	102
		Copper, Cu	mg/kg	0.5	300	290	80 - 120	103
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	96
		Lead, Pb	mg/kg	1	87	89.9	80 - 120	96
		Zinc, Zn	mg/kg	2	260	273	80 - 120	96
	erable Hydrocarbo	· .					Nethod: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB332329.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	99
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	95
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	92
	TRH F Bands	TRH >C10-C16	mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	92
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	93
RH (Total Recov	erable Hydrocarbo	ns) in Water				I	Nethod: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
_B332358.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	91
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	101
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	100
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	98
		TRH >C16-C34 (F3)	µg/L	500	1200	1200	60 - 140	102
		TRH >C34-C40 (F4)	μg/L	500	600	600	60 - 140	100
OC's in Soil						N	Nethod: ME-(A	U)-[ENV]AN4
Sample Number	7	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB332345.002	Monocyclic	Benzene	mg/kg	0.1	5.2	5	60 - 140	104
	Aromatic	Toluene	mg/kg	0.1	6.1	5	60 - 140	123
		Ethylbenzene	mg/kg	0.1	5.0	5	60 - 140	100
		m/p-xylene	mg/kg	0.2	9.8	10	60 - 140	98
		o-xylene	mg/kg	0.1	5.2	5	60 - 140	105
OCs in Water						N	Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB332543.002	Monocyclic	Benzene	μg/L	0.5	52	45.45	60 - 140	115
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	111
		Ethylbenzene	µg/L	0.5	52	45.45	60 - 140	114
		m/p-xylene	µg/L	1	100	90.9	60 - 140	113
		o-xylene	μg/L	0.5	52	45.45	60 - 140	114
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10	60 - 140	100
		· · · ·			40.0	40	70 400	
		d8-toluene (Surrogate)	µg/L	-	10.0	10	70 - 130	100

Sample Number Parameter Units LOR

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	92.5 60 - 140 80 60 - 140 62.5 60 - 140 Method: ME-(AU) pected Criteria % 946.63 60 - 140	Recovery %
LB332345.002		TRH C6-C10	mg/kg	25	75	92.5	cpected Criteria % 92.5 60 - 140 80 60 - 140 62.5 60 - 140 Method: ME-(AL yetted Criteria % 946.63 60 - 140 818.71 60 - 140	82
		TRH C6-C9	mg/kg	20	63	80	60 - 140	79
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	62.5	60 - 140	71
olatile Petroleum	Hydrocarbons in V	/ater				N	lethod: ME-(Al	U)-[ENV]AN4
	·							<u> </u>
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery S
•		Parameter TRH C6-C10	Units µg/L	LOR 50	Result 760			Recovery ^o 81
•						Expected	60 - 140	
•	Surrogates	TRH C6-C10	μg/L	50	760	Expected 946.63 818.71	60 - 140 60 - 140	81
		TRH C6-C10 TRH C6-C9	μg/L μg/L	50 40	760 680	Expected 946.63 818.71 10	60 - 140 60 - 140 60 - 140	81 83
Sample Number LB332543.002		TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L	50 40 -	760 680 10.0	Expected 946.63 818.71 10	60 - 140 60 - 140 60 - 140	81 83 100

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Mett	nod: ME-(AU)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE275273.001	LB332342.004	Mercury	mg/kg	0.05	0.26	<0.05	0.2	113

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE275273.001	LB332329.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	106
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	92
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	114
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Chlordane (alpha + gamma chlordane)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.1	0.2	<0.1	0.2	111
			Endrin	mg/kg	0.1	0.2	<0.1	0.2	123
			Beta Endosulfan	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	69
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total OC Pesticides	mg/kg	0.1	1.2	<0.1	-	-
			Total OC VIC EPA IWRG621	mg/kg	0.1	1.2	<0.1	-	-
	_		Total Other OCP VIC EPA IWRG621	mg/kg	0.1	0.6	<0.1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.52	0.51	-	105
OP Pesticides in	Soil						Meth	nod: ME-(Al	J)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE275273.001	LB332329.004	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	<0.2	2	108
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	<0.5	2	95
		Dichlorvos	mg/kg	0.5	1.9	<0.5	2	95
		Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
		Ethion	mg/kg	0.2	2.0	<0.2	2	102
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
		Total OP Pesticides*	mg/kg	1.7	8.0	<1.7	-	-
	Surrogate	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	96

								, [] =
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE275273.001	LB332329.004	Naphthalene	mg/kg	0.1	4.0	<0.1	4	100
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	4.1	<0.1	4	103
		Acenaphthene	mg/kg	0.1	4.1	<0.1	4	103
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	4.5	<0.1	4	113
		Anthracene	mg/kg	0.1	4.2	<0.1	4	105
		Fluoranthene	mg/kg	0.1	4.0	<0.1	4	101

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recover
E275273.001	LB332329.004		Pyrene	mg/kg	0.1	4.2	<0.1	4	106
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j&k)fluoranthene	mg/kg	0.2	<0.2	<0.2	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.9	<0.1	4	124
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>4.9</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	mg/kg	0.2	4.9	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>5.0</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	mg/kg	0.2	5.0	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>5.1</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	mg/kg	0.3	5.1	<0.3	-	-
			Total PAH (18)	mg/kg	0.1	34	<0.1	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.47	0.46	-	94
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.50	0.48	-	100
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.48	0.49	-	96
CBs in Soil							Mett	nod: ME-(AU	
C Sample	Sample Number	·	Parameter	Units	LOR	Result	Original	Spike	Recove
E275273.001	LB332329.004		Arochlor 1016	mg/kg	0.1	<0.1	<0.1	- Spike	- Recove
	2002020.004		Arochlor 1232	mg/kg	0.1	<0.1	<0.1	-	-
			Arochlor 1242	mg/kg	0.1	<0.1	<0.1		-
			Arochlor 1248	mg/kg	0.1	<0.1	<0.1	-	-
			Arochlor 1254	mg/kg	0.1	<0.1	<0.1	_	-
			Arochlor 1260	mg/kg	0.1	0.4	<0.1	0.4	105
			Total PCBs		0.1	0.4	<0.1	-	105
		Surrogates	TCMX (Surrogate)	mg/kg mg/kg	-	0.4	0.51	-	- 105
C Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recov
E275273.001	LB332339.004		Arsenic, As	mg/kg	1	46	8	50	76
								50	80
			Cadmium, Cd	mg/kg	0.3	40	<0.3		
			Chromium, Cr	mg/kg	0.5	45	5.3	50	80
			Chromium, Cr Copper, Cu	mg/kg mg/kg	0.5 0.5	45 67	5.3 27	50 50	80 79
			Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg	0.5 0.5 0.5	45 67 47	5.3 27 7.6	50 50 50	80 79 78
			Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1	45 67 47 59	5.3 27 7.6 20	50 50 50 50	80 79 78 78
			Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg	0.5 0.5 0.5	45 67 47	5.3 27 7.6 20 49	50 50 50 50 50	80 79 78 78 78 72
-	werable Hydrocarbo	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2	45 67 47 59 85	5.3 27 7.6 20 49 Mett	50 50 50 50 50 nod: ME-(AU	80 79 78 78 72)-[ENV]A
C Sample	Sample Number	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.5 0.5 0.5 1 2 LOR	45 67 47 59 85 Result	5.3 27 7.6 20 49 Meth Original	50 50 50 50 50 50 nod: ME-(AU Spike	80 79 78 78 72 72 72 72 8 8 8 8 8 8 8 8 9 9 7 8 8 8 9 7 8 7 8 7
C Sample	-	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.5 0.5 0.5 1 2 LOR 20	45 67 47 59 85 Result 42	5.3 27 7.6 20 49 Mett Original <20	50 50 50 50 50 nod: ME-(AU Spike 40	80 79 78 78 72 9)-[ENV]AI Recove
RH (Total Recc CC Sample E275273.001	Sample Number	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45	45 67 47 59 85 Result 42 60	5.3 27 7.6 20 49 Meth Original <20 <45	50 50 50 50 50 mod: ME-(AU Spike 40 40	80 79 78 78 72 72 72 72 72 72 72 72 72 72 72 72 72
C Sample	Sample Number	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45	45 67 47 59 85 Result 42 60 47	5.3 27 7.6 20 49 Metr Original <20 <45 <45	50 50 50 50 50 nod: ME-(AU Spike 40 40 40	80 79 78 78 72 72 72 72 72 72 72 72 72 72 72 72 72
C Sample	Sample Number	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 100	45 67 47 59 85 Result 42 60 47 <100	5.3 27 7.6 20 49 Metr Original <20 <45 <45 <45 <100	50 50 50 50 50 nod: ME-(AU Spike 40 40 40	80 79 78 72 72 9)-[ENV]AI Recove 104 108 102 -
C Sample	Sample Number	-	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45 100 110	45 67 47 59 85 Result 42 60 47 <100 150	5.3 27 7.6 20 49 Met Original <20 <45 <45 <100 <110	50 50 50 50 50 nod: ME-(AU Spike 40 40 40 -	80 79 78 72 72 9)-[ENV]AI Recove 104 108 102 -
C Sample	Sample Number		Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Ttal TRH C10-C40 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45 100 110 210	45 67 47 59 85 Result 42 60 47 <100 150 <210	5.3 27 7.6 20 49 Metr Original <20 <45 <45 <100 <110 <210	50 50 50 50 50 nod: ME-(AU Spike 40 40 40 - -	80 79 78 78 72 0)-[ENV]AI Recove 104 108 102 - -
C Sample	Sample Number	TRH F	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25	45 67 47 59 85 Result 42 60 47 <100 150 <210 44	5.3 27 7.6 20 49 Original <20 <45 <45 <100 <110 <210 <25	50 50 50 50 50 nod: ME-(AU Spike 40 40 40 - - - 40	80 79 78 78 72 1)-[ENV]Al Recove 104 108 102 - - - - 105
C Sample	Sample Number		Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C16 TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25	45 67 47 59 85 Result 42 60 47 <100 150 <210 44	5.3 27 7.6 20 49 Original <20 <45 <45 <100 <110 <210 <25 <25	50 50 50 50 50 60 60 50 60 60 70 70 70 70 70 70 70 7	80 79 78 78 72 ()-[ENV]Al Recove 104 108 102 - - - - 105 -
C Sample	Sample Number	TRH F	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C10-C40 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 90	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 44 <90	5.3 27 7.6 20 49 Original <20 <45 <45 <100 <110 <210 <25 <25 <90	50 50 50 50 50 60 60 70 70 70 70 70 70 70 7	80 79 78 78 72 ()-[ENV]Al Recove 104 108 102 - - - - 105 -
IC Sample E275273.001	Sample Number	TRH F	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C16 TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25	45 67 47 59 85 Result 42 60 47 <100 150 <210 44	5.3 27 7.6 20 49 Original <20 <45 <45 <100 <110 <210 <225 <25 <25 <80 <120	50 50 50 50 50 50 50 60 50 60 70 70 70 70 70 70 70 7	80 79 78 72 ()-[ENV]AN Recove 104 108 102 - - - 105 - 108 -
C Sample E275273.001	Sample Number	TRH F Bands	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120	5.3 27 7.6 20 49 Met 20 <45 <45 <100 <110 <210 <210 <25 <25 <25 <90 <120 Met	50 50 50 50 nod: ME-(AU Spike 40 40 - - - 40 - - 40 - - - 40 -	80 79 78 78 72 ()-[ENV]Al Recove 104 108 102 - - - 105 - 108 - 108
C Sample E275273.001 DC's in Soll C Sample	Sample Number LB332329.004 Sample Number	TRH F Bands	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C16 Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2 20 45 45 45 45 100 110 210 25 25 90 120	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 44 <90 <120 Result	5.3 27 7.6 20 49 Metr Original <20 <45 <45 <100 <110 <210 <210 <25 <25 <25 <90 <120 Metr Original	50 50 50 50 nod: ME-(AU Spike 40 40 - - - 40 - - 40 - - Spike	80 79 78 78 72 10)-[ENV]Al Recove - - - - - - - 105 - - 108 - - - 108 - - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soll C Sample	Sample Number	TRH F Bands Monocyclic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C4-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 90 120 20 120	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5	5.3 27 7.6 20 49 Metr Original <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 Metr Original <0.1	50 50 50 50 nod: ME-(AU Spike 40 40 - - 40 - - 40 - - MO 5	80 79 78 78 72 ()-[ENV]AI Recove - - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soll IC Sample	Sample Number LB332329.004 Sample Number	TRH F Bands	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C40 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 25 90 120 120	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3	5.3 27 7.6 20 49 Metr Original <20 <45 <45 <100 <110 <210 <210 <25 <25 <25 <80 <120 Metr Original <0.1 <0.1	50 50 50 50 50 Spike 40 40 40 - - - 40 - - 40 - - - 40 5 5 5	80 79 78 78 72 10)-[ENV]AI Recove 104 108 102 - - - 105 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 109 - - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soil IC Sample	Sample Number LB332329.004 Sample Number	TRH F Bands Monocyclic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	mg/kg mg/kg	0.5 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.1	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2	5.3 27 7.6 20 49 Mett Original <20 <45 <45 <45 <100 <110 <2210 <25 <25 <90 <120 Mett Original <0.1 <0.1 <0.1	50 50 50 50 50 Spike 40 40 40 - - 40 - - 40 - - 40 5 5 5 5 5	80 79 78 78 72 10-[ENV]AI Recove - - - 105 - - - 105 - - - 105 - - - 105 - - - 105 - - - 105 - - - 105 - - - - 105 - - - - 105 - [ENV]AI - - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soll IC Sample	Sample Number LB332329.004 Sample Number	TRH F Bands Monocyclic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg	0.5 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.2	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2 10	5.3 27 7.6 20 49 Mett Original <20 <45 <45 <45 <100 <110 <210 <2110 <210 <25 <25 <90 <120 Mett Original <0.1 <0.1 <0.1 <0.2	50 50 50 50 50 Spike 40 40 40 - - - 40 - - 40 - - 40 5 5 5 5 5 10	80 79 78 78 72 0)-[ENV]AI Recove - - - 1005 - - - 1005 - - - 1005 - - 1005 - - 1005 - - 1005 - - - 1005 - - - 1005 - - - - 1005 - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soil IC Sample	Sample Number LB332329.004 Sample Number	TRH F Bands Monocyclic Aromatic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg	0.5 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.2 0.1	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2 10 5.3	5.3 27 7.6 20 49 Met Original <20 <45 <45 <45 <100 <110 <210 <210 <210 <225 <25 <25 <90 <120 Met Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1	50 50 50 50 50 Spike 40 40 40 - - - 40 - - 40 - - - 40 5 5 5 5 5 5 10 5	80 79 78 78 72 0)-[ENV]AI Recove - - - 108 - - - 108 - - - 108 - - - 108 - - - 108 - - - 108 - - - - 105 - - - - 105 - - - - 105 - - - - - 105 - - - - - - - - - - - - - - - - - - -
C Sample E275273.001 DC's in Soil IC Sample	Sample Number LB332329.004 Sample Number	TRH F Bands Monocyclic Aromatic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	mg/kg mg/kg </td <td>0.5 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2 10 5.3 <0.1</td> <td>5.3 27 7.6 20 49 Met Original <20 <45 <45 <100 <110 <210 <210 <225 <25 <20 <120 Met Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1</td> <td>50 50 50 50 50 Spike 40 40 40 - - - - 40 - - - - - - - - - -</td> <td>80 79 78 78 72 0)-[ENV]AI Recove - - - 108 - - - 108 - - - 108 - - - 108 - - - 108 - - - 105 - - - - 105 - - - - 105 - - - - - - 105 - - - - - - - - - - - - - - - - - - -</td>	0.5 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2 10 5.3 <0.1	5.3 27 7.6 20 49 Met Original <20 <45 <45 <100 <110 <210 <210 <225 <25 <20 <120 Met Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1	50 50 50 50 50 Spike 40 40 40 - - - - 40 - - - - - - - - - -	80 79 78 78 72 0)-[ENV]AI Recove - - - 108 - - - 108 - - - 108 - - - 108 - - - 108 - - - 105 - - - - 105 - - - - 105 - - - - - - 105 - - - - - - - - - - - - - - - - - - -
C Sample	Sample Number LB332329.004 Sample Number	TRH F Bands Monocyclic Aromatic	Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg	0.5 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.2 0.1	45 67 47 59 85 Result 42 60 47 <100 150 <210 44 44 <90 <120 Result 5.5 6.3 5.2 10 5.3	5.3 27 7.6 20 49 Met Original <20 <45 <45 <45 <100 <110 <210 <210 <210 <225 <25 <25 <90 <120 Met Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1	50 50 50 50 50 Spike 40 40 40 - - - 40 - - 40 - - - 40 5 5 5 5 5 5 10 5	80 79 78 78 72 10-[ENV]AI Recove 104 102 - - 105 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - - 105 - - 105 - - 108 - - - 105 - - - 105 - - - - 105 - - - - - - - 105 - - - - - - - - - - - - - - - - - - -

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (co	ontinued)						Met	nod: ME-(AL	J)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE275273.001	LB332345.004	Totals	Total BTEX*	mg/kg	0.3	32	<0.3	-	-
			Total Xylenes*	mg/kg	0.3	15	<0.3	-	-
OCs in Water							Meti	nod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE275273.013	LB332543.031	Monocyclic	Benzene	µg/L	0.5	52	<0.5	45.45	114
		Aromatic	Toluene	µg/L	0.5	52	<0.5	45.45	115
			Ethylbenzene	µg/L	0.5	50	<0.5	45.45	109
			m/p-xylene	µg/L	1	98	<1	90.9	107
			o-xylene	µg/L	0.5	49	<0.5	45.45	108
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	46	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.1	9.7	-	91
			d8-toluene (Surrogate)	µg/L	-	9.7	8.7	-	97
			Bromofluorobenzene (Surrogate)	µg/L	-	9.6	10.2	-	96
		Totals	Total BTEX	µg/L	3	300	<3	-	-
/olatile Petroleu	m Hydrocarbons in §	Soll					Met	hod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE275273.001	LB332345.004		TRH C6-C10	mg/kg	25	72	<25	92.5	77
			TRH C6-C9	mg/kg	20	67	<20	80	84
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11	11	-	112
			d8-toluene (Surrogate)	mg/kg	-	13	12	-	126
			Bromofluorobenzene (Surrogate)	mg/kg	-	11	10	-	110
		VPH F	Benzene (F0)	mg/kg	0.1	5.5	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	39	<25	62.5	62
olatile Petroleu	m Hydrocarbons in \	Nater					Mett	hod: ME-(Al	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE275273.013	LB332543.031		TRH C6-C10	µg/L	50	880	<50	946.63	91
			TRH C6-C9	µg/L	40	760	<40	818.71	92
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.1	9.7	-	91
			d8-toluene (Surrogate)	µg/L	-	9.7	8.7	-	97
			Bromofluorobenzene (Surrogate)	µg/L	-	9.6	10.2	-	96
		VPH F	Benzene (F0)	µg/L	0.5		<0.5	-	-
			TRH C6-C10 minus BTEX (F1)	µg/L	50	580	<50		88

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

GEOTECHNIQUE PTY LTD

1 LEMKO PLACE PENRITH NSW 2750

1 SGS Ref: SE275273_COC

ħ

CHAIN OF CUSTODY

Results Required By: Normal Turnaround

Except pH Results Required By 3 days

Date: Wednesday, 11 December 2024 Date: Monday, 9 December 2024

Your Reference No.:

IC.		6, 33 MADDOX S NDRIA NSW 201							04	mpled By:	JH				20468/5 Melrose Par	k		ridje	ct Manager:	JOHN XU									
	Location	Depth (m)	Date	Soil	Water	Material	Metals As Cd Cr Cu Pb Hg Ni Zn	рН	CEC	CL8 TRH BTEX PAH	CL10 Metals* TRH BTEX PAH	CL17 Metals* TRH BTEX PAH OC OP PCB	Be B Co Mn Se	Mn	BTEX	TRH & BTEX	РАН	OCP	PCB	OCP & PCB	B	OCP,OP P& PCB	Cyanide	VOC	Phenol	PFAS	TCLP PAH	TCLP	Metal (Retes
	BH1	0.0-0.15	2/12/2024	G		Clay						~													~				
	BH1	0.2-0.3	2/12/2024	G		Clay					~																		
	BH1	1.0-1.1	2/12/2024	G		Clary	~	*	>				110										1000	122.5-	Bright St			and all	
	BH2	0.0-0.15	2/12/2024	G		Clay		~	~			~													~				
	BH2	0.35-0.45	2/12/2024	G		Clay	~				A STATE							Han Ca			1				1000	-			-
	BH3	0.0-0.15	3/12/2024	G		Clay		~	~			~																	
-	BH3	0.35-0.45	3/12/2024	G		Clay	~	4	>																				
	BH4	0.0-0.15	2/12/2024	G		Clay		~	~			~													~				
	BH4	0.2-0.3	2/12/2024	G		Clay	~												2.00										
	BH4	1.2-1.3	2/12/2024	G		Clay		~	~		~														~				
	BH5	0.0-0.15	3/12/2024	G		Cley		1253				~		-							1				~	1000			
1	DDS1		2/12/2024	G		Clay						~													~				
	RS1		2/12/2024		Vial+WG						~								1										
	RS2		3/12/2024		Vial+WG						~																		
	TS1		2/12/2024	Vial											~			1.33											
	TS2		3/12/2004	Vial											¢														
			Relinguishe	i by				-								Rec	eived by												
_	Name			Signature	-		ate			Name			5	ignature	0	1	Date				212		5	2.					
10	NHN XU			JX		4/12	2024						E.	P	PI	lbe	wing	1	Θ	411	212	X	Co	4.	40				
		mple (glass bottle) mple (plastic bottle)	18 ¹ -			Soil sample (Soil sample (Fibro Ceme Test require	ent Piece (pla ed	stic bag)		,	(

Page 1 of 1

SGS EHS Sydney
SE275273

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Shane McDermott	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	20468/5 Melrose Park	Samples Received	Wed 4/12/2024	
Order Number	20468/5	Report Due	Wed 11/12/2024	
Samples	16	SGS Reference	SE275273	

_ SUBMISSION DETAILS

This is to confirm that 16 samples were received on Wednesday 4/12/2024. Results are expected to be ready by COB Wednesday 11/12/2024. Please quote SGS reference SE275273 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 14 Soil/Clay, 2 Water 4/12/2024 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.6°C Three Days/Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client Geotechnique

Project 20468/5 Melrose Park

		OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Soil	(1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	Soil	Volatile Petroleum Hydrocarbons in Soil
No.	Sample ID	OC Pestic	OP Pestic	PAH (Poly Hydrocart	PCBs in Soil	pH in soil (1:5)	TRH (Tota Hydrocart	VOC's in Soil	Volatile Pe Hydrocart
001	BH1 0.0-0.15	27	14	27	8	-	10	11	7
002	BH1 0.2-0.3	-	-	27	-	-	10	11	7
003	BH1 1.0-1.1	-	-	-	-	1	-	-	-
004	BH2 0.0-0.15	27	14	27	8	1	10	11	7
006	BH3 0.0-0.15	27	14	27	8	1	10	11	7
007	BH3 0.35-0.45	-	-	-	-	1	-	-	-
008	BH4 0.0-0.15	27	14	27	8	1	10	11	7
010	BH4 1.2-1.3	-	-	27	-	1	10	11	7
011	BH5 0.0-0.15	27	14	27	8	-	10	11	7
012	DDS1	27	14	27	8	-	10	11	7
015	TS1	-	-	-	-	-	-	11	-
016	TS2	-	-	-	-	_	-	11	-

_ CONTINUED OVERLEAF

CLIENT DETAILS

Client Geotechnique

Project 20468/5 Melrose Park

UIVIIVIAR	Y OF ANALYSIS		1			1	
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	Total Phenolics in Soil	Total Recoverable Elements in Soil/Waste	VOCs in Water
001	BH1 0.0-0.15	-	1	1	1	7	-
002	BH1 0.2-0.3	-	-	1	-	-	-
003	BH1 1.0-1.1	9	1	1	-	7	-
004	BH2 0.0-0.15	9	1	1	1	7	-
005	BH2 0.35-0.45	-	1	1	-	7	-
006	BH3 0.0-0.15	9	1	1	-	7	-
007	BH3 0.35-0.45	9	1	1	-	7	-
008	BH4 0.0-0.15	9	1	1	1	7	-
009	BH4 0.2-0.3	-	1	1	-	7	-
010	BH4 1.2-1.3	9	1	1	1	7	-
011	BH5 0.0-0.15	-	1	1	1	7	-
012	DDS1	-	1	1	1	7	-
013	RS1	-	-	-	-	-	11
014	RS2	-	-	-	-	-	11

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SE275273

CLIENT DETAILS

Client Geotechnique

Project 20468/5 Melrose Park

_	SUMMARY	OF ANALYSIS	 				
	No.	Sample ID	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in Water	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
	013	RS1	1	7	22	9	7
	014	RS2	1	7	22	9	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 368121

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu
Address	PO Box 880, Penrith, NSW, 2751

Sample Details	
Your Reference	20468/5, Melrose Park
Number of Samples	1 Soil
Date samples received	04/12/2024
Date completed instructions received	04/12/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	11/12/2024
Date of Issue	11/12/2024
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Giovanni Agosti, Group Technical Manager Jack Wallis, Senior Chemist Jenny He, Inorganic Team Leader Nancy Zhang, Laboratory Manager, Sydney <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date extracted	-	05/12/2024
Date analysed	-	10/12/2024
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	114

svTRH (C10-C40) in Soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date extracted	-	05/12/2024
Date analysed	-	06/12/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	91

PAHs in Soil				
Our Reference		368121-1		
Your Reference	UNITS	DSS1		
Date Sampled		02/12/2024		
Type of sample		Soil		
Date extracted	-	05/12/2024		
Date analysed	-	06/12/2024		
Naphthalene	mg/kg	<0.1		
Acenaphthylene	mg/kg	<0.1		
Acenaphthene	mg/kg	<0.1		
Fluorene	mg/kg	<0.1		
Phenanthrene	mg/kg	<0.1		
Anthracene	mg/kg	<0.1		
Fluoranthene	mg/kg	<0.1		
Pyrene	mg/kg	<0.1		
Benzo(a)anthracene	mg/kg	<0.1		
Chrysene	mg/kg	<0.1		
Benzo(b,j+k)fluoranthene	mg/kg	<0.2		
Benzo(a)pyrene	mg/kg	<0.05		
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1		
Dibenzo(a,h)anthracene	mg/kg	<0.1		
Benzo(g,h,i)perylene	mg/kg	<0.1		
Total +ve PAH's	mg/kg	<0.05		
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5		
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5		
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5		
Surrogate p-Terphenyl-d14	%	71		

Organochlorine Pesticides in soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date extracted	-	05/12/2024
Date analysed	-	06/12/2024
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	75

Organophosphorus Pesticides in Soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date extracted	-	05/12/2024
Date analysed	-	06/12/2024
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	75

PCBs in Soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date extracted	-	05/12/2024
Date analysed	-	06/12/2024
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-Fluorobiphenyl	%	71

Misc Soil - Inorg		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date prepared	-	05/12/2024
Date analysed	-	06/12/2024
Total Phenolics (as Phenol)	mg/kg	<5

Acid Extractable metals in soil		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date prepared	-	05/12/2024
Date analysed	-	05/12/2024
Arsenic	mg/kg	10
Cadmium	mg/kg	<0.4
Chromium	mg/kg	26
Copper	mg/kg	24
Lead	mg/kg	28
Mercury	mg/kg	<0.1
Nickel	mg/kg	9
Zinc	mg/kg	42

Moisture		
Our Reference		368121-1
Your Reference	UNITS	DSS1
Date Sampled		02/12/2024
Type of sample		Soil
Date prepared	-	05/12/2024
Date analysed	-	06/12/2024
Moisture	%	17

Method ID	Mathedalam, Cumman,
	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish).
	Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	
Weldis-02 I	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A
	(3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
-	
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A
	(3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the
	positive individual TRH fractions (>C10-C40).
Ora 021/022/025	Sail complex are systemated with displayers there are untere with displayers and enclosed by CC ECD and/or
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of
	the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-
Olg-022/025	MSMS.
0 000/005	
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of
	the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			09/12/2024	[NT]		[NT]	[NT]	06/12/2024	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	105	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	105	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	107	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	103	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	111	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	102	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	103	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	68	[NT]		[NT]	[NT]	102	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	85	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	88	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	85	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	88	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	92	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALI	in Soil			Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	74	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	77	[NT]		[NT]	[NT]	75	

QUALITY CONTR			Du	Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	78	[NT]		[NT]	[NT]	76	

QUALITY CONTR			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Fenthion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Phosalone	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	78	[NT]		[NT]	[NT]	76	

QUALITY CONTROL: PCBs in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	74	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	73	[NT]		[NT]	[NT]	70	

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024	[NT]
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			05/12/2024	[NT]	[NT]		[NT]	05/12/2024	
Date analysed	-			05/12/2024	[NT]	[NT]		[NT]	05/12/2024	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	103	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	110	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	103	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	111	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	104	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	108	

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.
GEOTECHNIQUE PTY LTD

1 LEMKO PLACE PENRITH NSW 2750

									OF CU	STODY							
			Excep		sults Requ sults Req			Furnarou	nd		Date: Date:	Wednesd	lay, 11 Decen	1ber 2024			
						Your Ref	ference N	lo.:									
ŕc	D: ENVIROLAB S		TD				Sampled By: Project Manager:			JH JOHN XU		. <u>.</u>	Ref No	20468/5			
	CHATSWOOD									JOHN XU	Location: Melrose Park						
	Location	Depth (m)	Date	Soil	Material	Metals As Cd Cr Cu Pb Hg Ni Zn	TRH & BTEX	РАН	OCP	OP	РСВ	PHENOL	CYANIDE	COMBO NO	PFAS (extended)	TCLP PFAS (water-routine level, short) (PFOS+PFHxS , PFOA)	(RTA Test
-	DSS1		2/12/2024	G			v	1	v				н 2015 год стор стор стор стор стор стор стор стор	8			÷
	Relinguished by									Received by				1			
Name Signature			Da	ate		Name		Signature			Date						
10	IOHN XU		JX . 4/12/2024			Dannielle Luff			DLIP			04/12/24 1520					
G Soil sample (glass jar) FCP Fibro Cement Pi P Soil sample (plastic bag) ✓ Test required				Piece (plastic bag) PFASC PFAS Co			PFAS Contair	iner ⁻ : As,Cd,Cr,Cu,Pb,Hg,Ni & Zn (8 m			metals)						

Envirofao Services 12 Ashley St 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 5200 Job No: 368121 Date Received: 04/12/24 Time Received: 15 20 Received By: DUA Temp: Col/Ambient Cooling: Ice/IceDack 12°C Security: Intal/Broken/None ~__

٦

Page 1 of 1

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu

Sample Login Details	
Your reference	20468/5, Melrose Park
Envirolab Reference	368121
Date Sample Received	04/12/2024
Date Instructions Received	04/12/2024
Date Results Expected to be Reported	11/12/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET123149 / 126329 / 1 – 5 Your ref : 20468/5 – Corner Wharf Road and Hope Street Melrose Park NATA Accreditation No: 14484

06 December 2024

Geotechnique Pty Ltd 1 Lemko Place Penrith NSW 2750

Accredited for compliance with ISO/IEC 17025 - Testing.

Attn: Mr John Xu

Dear John

Asbestos Identification

This report presents the results of five samples, forwarded by Geotechnique Pty Ltd on 04 December 2024, for analysis for asbestos.

1.Introduction:Five samples forwarded were examined and analysed for the presence of asbestos on 06 December 2024.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF** (Asbestos Fines), **FA** (Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the NEPM Guidelines.

 3. Results : Sample No. 1. ASET123149 / 126329 / 1. BH1 - 0.0 - 0.15. Approx dimensions 10.0 cm x 10.0 cm x 9.5 cm Approximate total dry weight of soil = 1282.0 g. The sample consisted of a mixture of clayish sandy soil, stone, sandstone, plant matter and organic fibres.

No asbestos detected.

Sample No. 2. ASET123149 / 126329 / 2. BH2 - 0.0 - 0.15.
Approx dimensions 10.0 cm x 10.0 cm x 9.5 cm
Approximate total dry weight of soil = 1280.0 g.
The sample consisted of a mixture of clayish sandy soil, stone, sandstone, plant matter and organic fibres.
No asbestos detected.

Sample No. 3. ASET123149 / 126329 / 3. BH3 - 0.0 - 0.15. Approx dimensions 10.0 cm x 10.0 cm x 7.1 cm Approximate total dry weight of soil = 779.0 g. The sample consisted of a mixture of clayish soil, stone, sandstone, plant matter and organic fibres. No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

OCCUPATIONAL HEALTH & SAFETY STUDIES • INDOOR AIR QUALITY SURVEYS • HAZARDOUS MATERIAL SURVEYS • RADIATION SURVEYS • ASBESTOS SURVEYS ASBESTOS DETECTION & IDENTIFICATION • REPAIR & CALIBRATION OF SCIENTIFIC EQUIPMENT • AIRBORNE FIBRE & SILICA MONITORING

Sample No. 4. ASET123149 / 126329 / 4. BH4 - 0.0 - 0.15. Approx dimensions 10.0 cm x 10.0 cm x 9.7 cm Approximate total dry weight of soil = 1306.0 g. The sample consisted of a mixture of clayish sandy soil, stone, sandstone, paint flakes, plant matter and organic fibres. No asbestos detected.

Sample No. 5. ASET123149 / 126329 / 5. BH5 - 0.0 - 0.15. Approx dimensions 10.0 cm x 10.0 cm x 6.3 cm Approximate total dry weight of soil = 700.0 g. The sample consisted of a mixture of clayish soil, stone, sandstone, plant matter and organic fibres. No asbestos detected.

Reported by,

WORLD RECOGNISED ACCREDITATION

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/ or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.

-Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.

- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- # denotes friable asbestos as soft fibro plaster, fragments of ACM smaller than 7mm which are considered as friable and / or highly weathered ACM that will easily crumble.
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.
- Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01 % for ACM detected unless the approximate weight is given.

					CHAIN OF CUSTODY RECORD						
ASE	I JOB NO: ASET 12314	9/12632	9/1-5	Contact Name:	JOHN XU						
Name/ Company Name: Geotechnique				Job No:	ob No: 20468/5			Asbestos WA/ NEPM 500mL			
Address: 1 Lemko Place Penrith			rith	Project Address:	Corner Wharf Road and Hope Street, Melrose Park	erial	(+/-)			er	+
				Purchase Order:		n Mat	n Soil	NA/ N	ibre (n Wat	n Dus
Contact Ph: 0247222700		Email Results to:		Asbestos in Material	Asbestos in Soil (+/-)	stos V	Asbestos Fibre Count	Asbestos in Water	Asbestos in Dust		
	Sample ID	Date	Туре	Container	Sample Depth (m)	Asbe	Asbe	Asbe	Asbe	Asbe	Asbe
1	BH1	2/12/2024	Soil	Р	0.0-0.15			٧			
2	BH2	2/12/2024	Soil	Ρ	0.0-0.15			V			
3	внз	3/12/2024	Soil	Ρ	0.0-0.15			٧			
4	BH4	2/12/2024	Soil	Р	0.0-0.15			٧			
5	вн5	3/12/2024	Soil	Р	0.0-0.15			v			
Reli	nquished By:		OL	HN XU	Received By:	1	Turn a	around	time		Shipme Metho
Date: 4/12/202		2/2024	Date & Time: 4: 1 pm	Same Da	y 24 hrs	48 hrs	3 Days	5 days			
Sigr	ature:	Signature:		XL	Signature:						

DECEIVED 0 4 DEC 2024 BY: ~~

APPENDIX E

UNEXPECTED FINDS MANAGEMENT PROTOCOL

Unexpected Finds Management Protocol Proposed Melrose Park New High School 37 Hope Street, Melrose Park

In the event that unexpected finds and / or suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces / pipes, ash material, imported fill materials (which are different to those encountered during this and previous assessments), etc.) are encountered during future earthworks / site preparation, the following actions are to be undertaken.

Management of unexpected finds and / or suspect materials

- If unexpected finds and / or suspect materials are encountered:
- Works are to be ceased.
- An Environmental Consultant is to be engaged to take appropriate action.
- If contamination is identified, the contaminated materials must be disposed of at an EPA licensed landfill facility with an appropriate waste classification.

Management of bonded asbestos containing material (ACM)

If bonded ACM is encountered, the following measures are implemented:

- Engage a SafeWork accredited Class B asbestos contractor.
- Removal of the asbestos waste must be carried out in accordance with the requirements of the regulators, such as SafeWork NSW and NSW EPA.
- A SafeWork Licensed Asbestos Assessor should be engaged to provide a clearance certificate.

Management of friable asbestos within the soil

It is recommended that the following measures are implemented if friable asbestos is encountered:

- Engage a SafeWork accredited Class A Asbestos contractor.
- Removal of the asbestos waste must be carried out in accordance with the requirements of the regulators, such as SafeWork NSW and NSW EPA
- A SafeWork Licensed Asbestos Assessor must be engaged to provide a clearance certificate.

APPENDIX F

ENVIRONMENTAL NOTES

IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

REASONS FOR AN ENVIRONMENTAL ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of either a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to the assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be both financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination within a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

Environmental Notes continued

STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.

EOTECHNIQUE

PTY LTD